Solar Energy News  
SOLAR DAILY
On the trail of organic solar cells' efficiency
by Staff Writers
Dresden, Germany (SPX) Mar 30, 2020

Illustration of the generation of charge pairs (excitons), the precursors of free charge carriers in the active layer of an organic solar cell. Free charge carriers then generate an electric voltage at the contacts of the cell. The lower image section shows a microscopic model of the organic thin film.

In their study, by investigating the vibrations of the molecules in the thin films, the scientists were able to show that very fundamental quantum effects, so-called zero point vibrations, can make a significant contribution to voltage losses. The study has now been published in the journal Nature Communications.

Solar cells are a crystallization point of high hopes for the necessary transformation of the global energy production. Organic photovoltaics (OPV), which is based on organic, i.e. carbon-based materials, could be ideally suited to become an important pillar in the energy mix of the "renewables" because they have a better ecological balance sheet compared to conventional silicon-based modules and only a small amount of material is required to produce the thin films.

However, a further increase in efficiency is necessary. It is based on various characteristic values such as the open-circuit voltage, whose too low values are currently a main reason for still quite moderate efficiencies of OPV.

The study investigated physical reasons for this - including the vibrations of the molecules in the thin films. It was shown that the so-called zero point vibrations - an effect of quantum physics that characterizes the motion at absolute temperature zero - can have a significant influence on voltage losses.

A direct relationship between molecular properties and macroscopic device properties was demonstrated. The results provide important information for the further development and improvement of novel organic materials.

The low energy edge of optical absorption spectra is crucial for the performance of solar cells, but in the case of organic solar cells with many influencing factors it is not yet well understood. In the present study, the microscopic origin of absorption bands in molecular blend systems and their role in organic solar cells was investigated.

The focus was on the temperature dependence of the absorption characteristics, which was investigated theoretically under consideration of molecular vibrations. The simulations matched very well with the experimentally measured absorption spectra which leads to a number of important findings.

The authors discovered that the zero-point vibrations, mediated by electron-phonon interaction, cause a considerable absorption bandwidth. This leads to reemission of a part of the energy which is unused and hence reduces the open-circuit voltage. These voltage losses can now be predicted from electronic and vibronic molecular parameters.

What is unusual is that this effect is strong even at room temperature and can significantly reduce the efficiency of the organic solar cell. Which strategies to reduce these vibration-induced voltage losses could be applied is being discussed by the authors for a larger number of systems and different heterojunction geometries.

Research paper


Related Links
Technische UniversitAt Dresden
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Perovskite solar cells made of peppermint oil and walnut aroma food additives, preventing lead leakage
Pohang, South Korea (SPX) Feb 27, 2020
Solar energy that reaches the Earth is about 125 million gigawatt (Gw). When this solar energy generated for a year is converted into oil, it is 100 trillion ton which is ten thousand times more than the amount of oil energy the world uses in a year. So, it is no surprising when one of the coffee commercial ads said, "The sunlight reaching the Earth for 30 seconds is enough for the entire world to use energy for 48 hours." Converting this solar energy into electrical energy is solar cell energy. Recentl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
A novel biofuel system for hydrogen production from biomass

Recovering phosphorus from corn ethanol production can help reduce groundwater pollution

Deceptively simple process could boost plastics recycling

Scientists call for more sustainable palm oil practices

SOLAR DAILY
Stanford engineers create shape-changing, free-roaming soft robot

Thai hospitals deploy 'ninja robots' to aid virus battle

Soft robot, unplugged

Help NASA design a robot to dig on the Moon

SOLAR DAILY
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

SOLAR DAILY
Volvo Cars halts Europe, US production

Tesla resumes work on German plant after court ruling

Joint Japanese-German research project investigates networked and automated driving

Volvo Cars halts Europe, US productio

SOLAR DAILY
Converting waste heat into electricity to power billions of sensors

Tiny double accelerator recycles energy

Fish scales could make wearable electronics more sustainable

Engineers develop supercapacitor to power wearable electronic

SOLAR DAILY
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Protests as Moscow moves to build road on radioactive dump

Atomic fingerprint identifies emission sources of uranium

US military plans portable mini nuclear power plants

SOLAR DAILY
Brussels not dropping Green Deal despite virus

Czech PM urges EU to shelve Green Deal amid virus

The impact of energy development on bird populations

Brexit and Its Impact on Green Energy Projects

SOLAR DAILY
Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself

Burned area trends in the Amazon similar to previous years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.