Solar Energy News  
CHIP TECH
One-pot synthesis towards sulfur-based organic semiconductors
by Staff Writers
Nagoya, Japan (SPX) Oct 10, 2016


Yellow and gray colors on the molecule represent sulfur and carbon atoms respectively. Thiophene-fused PAHs have found uses as transistors. Image courtesy ITbM, Nagoya University. For a larger version of this image please go here.

Dr. Lingkui Meng, Dr. Yasutomo Segawa, Professor Kenichiro Itami of the JST-ERATO Itami Molecular Nanocarbon Project, Institute of Transformative Bio-Molecules (ITbM) of Nagoya University and Integrated Research Consortium on Chemical Sciences, and their colleagues have reported in the Journal of the American Chemical Society, on the development of a simple and effective method for the synthesis of thiophene-fused PAHs.

Thiophene-fused PAHs are organic molecules composed of multiple aromatic rings including thiophene. Thiophene is a five-membered aromatic ring containing four carbon atoms and a sulfur atom.

Thiophene-fused PAHs are known to be one of the most common organic semiconductors and are used in various electronic materials, such as in transistors, organic thin-film solar cells, organic electro-luminescent diodes and electronic devices. More recently, they have found use in wearable devices due to their lightweight and flexibility.

Thienannulation (thiophene-annulation) reactions, a transformation that makes new thiophene rings via cyclization, leads to various thiophene-fused PAHs. Most conventional thienannulation methods require the introduction of two functional groups adjacent to each other to form two reactive sites on PAHs before the cyclization can take place.

Thus, multiple steps are required for the preparation of the substrates. As a consequence, a more simple method to access thiophene-fused PAHs is desirable. A team led by Yasutomo Segawa, a group leader of the JST-ERATO project, and Kenichiro Itami, the director of the JST-ERATO project and the center director of ITbM, has succeeded in developing a simple and effective method for the formation of various thiophene-fused PAHs.

They have managed to start from PAHs that have only one functional group, which saves the effort of installing another functional group, and have performed the thienannulation reactions using elemental sulfur, a readily available low cost reagent. The reactions can be carried out on a multigram scale and can be conducted in a one-pot two-step reaction sequence starting from an unfunctionalized PAH.

This new approach can also generate multiple thiophene moieties in a single reaction. Hence, this method has the advantage of offering a significant reduction in the number of required steps and in the reagent costs for thiophene-fused PAH synthesis compared to conventional methods.

The researchers have shown that upon heating and stirring the dimethylformamide solution of arylethynyl group-substituted PAHs and elemental sulfur in air, they were able to obtain the corresponding thiophene-fused PAHs. The arylethynyl group consists of an alkyne (a moiety with a carbon-carbon triple bond) bonded to an aromatic ring.

The reaction proceeds via a carbon-hydrogen (C-H) bond cleavage at the position next to the arylethynyl group (called the ortho-position) on PAHs, in the presence of sulfur. As the ortho-C-H bond on the PAH can be cleaved under the reaction conditions, prior functionalization (installation of a functional group) becomes unnecessary.

Arylethynyl-substituted PAHs are readily accessible by the Sonogashira coupling, which is a cross-coupling reaction to form carbon-carbon bonds between an alkyne and a halogen-substituted aromatic compound.

The synthesis of thiophene-fused PAHs can also be carried out in one-pot, in which PAHs are subjected to a Sonogashira coupling to form arylethynyl-substituted PAHs, followed by direct treatment of the alkyne with elemental sulfur to induce thienannulation.

"Actually, we coincidentally discovered this reaction when we were testing different chemical reactions to synthesize a new molecule for the Itami ERATO project," says Yasutomo Segawa, one of the leaders of this study. "At first, most members including myself felt that the reaction may have already been reported because it is indeed a very simple reaction.

Therefore, the most difficult part of this research was to clarify the novelty of this reaction. We put in a significant amount of effort to investigate previous reports, including textbooks from more than 50 years ago as well as various Internet sources, to make sure that our reaction conditions had not been disclosed before," he continues.

The team succeeded in synthesizing more than 20 thiophene-fused PAHs. They also revealed that multiple formations of thiophene rings of PAHs substituted with multiple arylethynyl groups could be carried out all at once.

Multiple thiophene-fused PAHs were generated from three-fold and five-fold thienannulations, which generated triple thia[5]helicene (containing three thiophenes) and pentathienocorannulene (containing five thiophenes), respectively. The pentathienocorannulene was an unprecedented molecule that was synthesized for the first time.

"I was extremely happy when I was able to obtain the propeller-shaped triple thia[5]helicene and hat-shaped pentathienocorannulene, because I have always been aiming to synthesize exciting new molecules since I joined Professor Itami's group," says Lingkui Meng, a postdoctoral researcher who mainly conducted the experiments.

"We had some problems in purifying the compounds but we were delighted when we obtained the crystal structures of the thiophene compounds, which proved that the desired reactions had taken place."

"The best part of this research for me is to discover that our C-H functionalization strategy on PAHs could be applied to synthesize structurally beautiful molecules with high functionalities," says Segawa.

"The successful synthesis of a known high-performance organic semiconductive molecule, (2,6-bis(4-n-octylphenyl)- dithieno[3,2-b:2?,3?-d]thiophene, from a relatively cheap substrate opens doors to access useful thiophene compounds in a rapid and cost-effective manner."

"We hope that ongoing advances in our method may lead to the development of new organic electronic devices, including semiconductor and luminescent materials," say Segawa and Itami. "We are considering the possibilities to make this reaction applicable for making useful thiophene-fused PAHs, which would lead to the rapid discovery and optimization of key molecules that would advance the field of materials science."

This article "Thiophene-Fused p-Systems from Diarylacetylenes and Elemental Sulfur" by Lingkui Meng, Takao Fujikawa, Motonobu Kuwayama, Yasutomo Segawa and Kenichiro Itami is published online in the Journal of the American Chemical Society. DOI: 10.1021/jacs.6b06486


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute of Transformative Bio-Molecules (ITbM), Nagoya University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
More stable qubits in perfectly normal silicon
Delft, Netherlands (SPX) Oct 07, 2016
The power of future quantum computers stems from the use of qubits, or quantum bits, which do not have to be either 0 or 1, but can also be 0 and 1 at the same time. It is not yet clear on which technology these qubits in quantum computers will be based, but qubits based on electron spins are looking more and more promising. It was thought that these could only be produced in the expensive ... read more


CHIP TECH
Organic semiconducting polymers can harvest sunlight to split CO2 into fuels

New findings by Stanford chemists could lead to greener methanol production

Liquid Manure Volume Reduced by Half

Can jet fuel be grown on trees?

CHIP TECH
Your next nurse could be a robot

First demonstration of brain-inspired device to power artificial systems

QinetiQ, Milrem debut Titan unmanned ground vehicle

Raytheon developing interface for DARPA's ground vehicle program

CHIP TECH
Wind turbines a risk to birds living as far as 100 miles away

SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

GM commits to 100 percent renewables

CHIP TECH
Scotland greens up public transportation

Germany conducting inquiry into Tesla autopilot system

Fisker relaunches electric car effort

GM, U.S. Army unveil Colorado ZH2 tactical hydrogen vehicle

CHIP TECH
Enhancing the superconducting properties of an iron-based material

New cost-effective silicon carbide high voltage switch created

Wireless 'data center on a chip' aims to cut energy use

Advancing lithium-air batteries with development of novel catalyst

CHIP TECH
Japan nuclear reactor shuttered for safety work

South Africa's nuclear programme kicked into touch, again

Deal signed for giant UK nuclear project

UN trims nuclear power growth forecasts

CHIP TECH
Strong at the coast, weak in the cities - the German energy-transition patchwork

Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

CHIP TECH
'Goldilocks fires' can enhance biodiversity in Western forests

Urban warming slows tree growth, photosynthesis

Emissions from logging debris in Africa may be vastly under estimated

Farming with forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.