Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
Oslo-experiment may explain massive star explosions
by Yngve Vogt for Apollon Magazine
Oslo, Norway (SPX) May 11, 2012


Today astrophysicists are struggling to perform computer simulations of a supernova (a massive star explosion). New knowledge about atomic nuclei from the University of Oslo may make such simulations easier. Photo: NASA.

Ground-breaking research in nuclear physics at the University of Oslo may help astrophysicists understand how the heavier elements in our universe were made. The Big Bang only produced the lightest elements, such as hydrogen and helium. One of the fundamental questions of astrophysics is how all the other elements were formed. In 1957, American researchers concluded that elements were formed through nuclear reactions inside stars.

Astrophysicists have believed that half the elements which are heavier than iron were formed in gigantic star explosions, known as supernovas. However, there is one little snag with this theory: Astrophysicists have huge problems to make computer simulations of a supernova.

"A supernova is extremely complicated. Astrophysicists have not yet managed to make realistic computer simulations of supernova explosions," says nuclear physicist Ann-Cecilie Larsen at the SAFE-Centre for Accelerator-based Research and Energy Physics at the University of Oslo.

The simulations are based on certain characteristics of the atomic nucleus that are taken for granted but which have never been tested, as these characteristics are hard to determine.

Now, experiments carried out at the University of Oslo show that astrophysicists are using the wrong data in their models. No one has ever carried out these experiments before. The new results may have a great impact.

"Calculations show that it will be 200 to 300 times easier to achieve specific nuclear reactions in a supernova with our data," Larsen says.

Stars with onion-like layers
In order to understand this discovery, we must take a few steps back. "In earlier times we thought the Sun was fuelled by coal. However, when we came to understand how old the solar system actually was, we realized there wasn't enough coal to fuel the Sun. Instead, the production of heat was explained by fusion, in other words melting nuclei together."

The Sun consists of approximately 75 per cent hydrogen, 23 per cent helium and a small portion of heavier elements. Pairs of hydrogen atoms fuse into helium atoms when the temperature and the pressure are so high that they exceed the electromagnetic forces that push the atoms apart. This is what happens at the centre of the Sun, where temperatures reach 15 million degrees Celsius.

About four billion years from now, all the hydrogen will be burned up. The combustion of helium will start, converting helium into carbon and oxygen. When the helium is burned up, the combustion of carbon and oxygen starts. In this way, increasingly heavy elements are formed.

"Imagine the Sun as an onion with multiple layers. The heaviest element is formed at the core, whereas the outer layers have lighter elements."

When the Sun expires, the core of the Sun will be transformed into neon. In a really heavy star, the core will have turned into iron. Then it will be over. A dying star will never be able to form heavier elements than iron. And the explanation is surprisingly simple.

"Stars do not gain energy by burning heavier atomic nuclei. This has to do with the nuclear binding energy."

In nuclear physics, energy can be released by fusing small atomic nuclei. This process is called fusion.

When the elements are heavier than iron, it is only possible to extract energy from nuclear reactions by splitting the atomic nucleus. This process is called fission, which we know from nuclear power plants.

In order for a dying star to end up as a supernova, its core must have been transformed into iron.

"Once the core cannot be compressed any further, the compressed matter must expand again in a gigantic explosion, or supernova. This is where the heavy elements of the universe may have been formed."

Atomic collisions
Nuclear physicists at the University of Oslo have measured the energy states of the elements iron and molybdenum. The results of these experiments could change our understanding of supernova explosions. All the experiments were conducted in the cyclotron laboratory at UiO, where nuclear physicists can measure what happens when atomic nuclei collide with each other at very high speeds.

The protons and neutrons are put very tightly together and orbit inside the nucleus itself. Protons are positively charged particles. Neutrons are not charged.

In one of the experiments the nuclear physicists shoot at a target consisting of iron, with helium ions. When a huge amount of energy is given to the iron nuclei, the protons and neutrons of the iron core are pushed into a new orbit. In the second experiment, helium is shot at molybdenum.

"The atomic nuclei become highly excited and emit electromagnetic radiation. This radiation can be measured. The characteristics of the atomic nucleus appear to be different to what was previously thought."

Instead of releasing all the energy in a single quantum leap, the atomic nucleus releases energy in a series of small quantum leaps.

"Our experiments show a strong probability that the atomic nucleus releases small amounts of energy. It has been widely believed that this had little effect on the formation of elements in supernovae. We were surprised. The dynamics of the element production could be very different. All the atomic nuclei are connected in a network. If the nucleus of an atom changes its characteristics, this may change the entire pattern governing the formation of other elements."

Elements vary
One of the problems with simulations is that no one knows what happens when nuclear reactions move beyond the well-known nuclei and out to the very exotic ones, that are not found in nature.

Atomic nuclei consist of a good mix of protons and neutrons. The definition of an element is determined by the number of protons. The physical characteristics of elements depend also on the number of neutrons. The various states are called isotopes. '

When it gets really hot, such as inside a star or a supernova, neutrons may be released and fuse with other atoms. When one of the neutrons of an atom emits an electron, the neutron turns into a proton. Then the atom has been transformed into a heavier element.

Nuclear physicists can calculate the probability of a physical transition between different elements. The known isotopes have been measured in laboratories. However, there are many isotopes which have not been measured. The limits are unknown.

"We do not know what happens when nuclear reactions in supernova explosions move beyond the table of isotopes. In a matter of seconds, many exotic atoms are formed that do not exist on Earth and which quickly transform into stable elements. Since we have no data on these exotic nuclei, the astrophysicists have to make many assumptions about their properties."

In a supernova explosion you need a large enough number of neutrons available. At the moment there seems to be more protons than neutrons in a supernova.

"In order to get the necessary reactions in a supernova, we must have neutron-rich nuclei."

This is precisely where Larsen's research comes in. As long as the supernova has a sufficient amount of neutrons, astrophysicists can, with the help of the new findings from the University of Oslo, produce better simulations of the formation of elements in supernovae.

.


Related Links
University of Oslo
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
IBEX Reveals a Missing Boundary At the Edge Of the Solar System
Greenbelt, MD (SPX) May 11, 2012
Washington DC (SPX) May 11, 2012 For the last few decades, space scientists have generally accepted that the bubble of gas and magnetic fields generated by the sun - known as the heliosphere - moves through space, creating three distinct boundary layers that culminate in an outermost bow shock. This shock is similar to the sonic boom created ahead of a supersonic jet. Earth itself certain ... read more


STELLAR CHEMISTRY
Better Plants for Biofuels

Better plants for biofuels

The Andersons Finalizes Purchase of Iowa Ethanol Plant

USA Leads World in Exports of Ethanol

STELLAR CHEMISTRY
Game-powered machine learning opens door to Google for music

Terraforming a landscape for a robotic rover

Robot reveals the inner workings of brain cells

Japan's Sharp to sell talking robot vacuum cleaner

STELLAR CHEMISTRY
Opening Day Draws Close for Janneby Wind Testing Site

NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

DoD, Navy and Wind Farm Developer Release Historic MoA

STELLAR CHEMISTRY
Nissan posts record sales, $4.28 bn net profit

Electric-powered van to make trans-Africa trip

Toyota full-year profits dive, pledges recovery

China sees red as Ferrari damages ancient wall

STELLAR CHEMISTRY
Emerging economies bolster oil demand: IEA

China's CNOOC starts deepwater drilling

Power struggle in Angola amid new oil boom

Manila urges dialogue over shoal dispute

STELLAR CHEMISTRY
Two suspects for Italy nuclear boss shooting

NGO urges compensation for Areva's Niger staff

ATMEA1 Reactor Is Fitting Local Needs

Germany energy giant RWE hit hard by nuclear exit

STELLAR CHEMISTRY
Deal sought on EU efficiency directive

Growth of Carbon Capture and Storage Stalled in 2011

Draft Rule Requiring Public Disclosure of Chemicals Used in Hydraulic Fracturing

CUNY Energy Institute Battery System Could Reduce Buildings' Electric Bills

STELLAR CHEMISTRY
Agroforestry is not rocket science but it might save DPR Korea

Handful of heavyweight trees per acre are forest champs

Green groups say Indonesia deforestation ban 'weak'

Bolivian natives begin new march in road protest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement