Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Parallel programming may not be so daunting
by Staff Writers
Boston MA (SPX) Mar 27, 2014


File image.

Computer chips have stopped getting faster: The regular performance improvements we've come to expect are now the result of chipmakers' adding more cores, or processing units, to their chips, rather than increasing their clock speed.

In theory, doubling the number of cores doubles the chip's efficiency, but splitting up computations so that they run efficiently in parallel isn't easy. On the other hand, say a trio of computer scientists from MIT, Israel's Technion, and Microsoft Research, neither is it as hard as had been feared.

Commercial software developers writing programs for multicore chips frequently use so-called "lock-free" parallel algorithms, which are relatively easy to generate from standard sequential code. In fact, in many cases the conversion can be done automatically.

Yet lock-free algorithms don't come with very satisfying theoretical guarantees: All they promise is that at least one core will make progress on its computational task in a fixed span of time. But if they don't exceed that standard, they squander all the additional computational power that multiple cores provide.

In recent years, theoretical computer scientists have demonstrated ingenious alternatives called "wait-free" algorithms, which guarantee that all cores will make progress in a fixed span of time. But deriving them from sequential code is extremely complicated, and commercial developers have largely neglected them.

In a paper to be presented at the Association for Computing Machinery's Annual Symposium on the Theory of Computing in May, Nir Shavit, a professor in MIT's Department of Electrical Engineering and Computer Science; his former student Dan Alistarh, who's now at Microsoft Research; and Keren Censor-Hillel of the Technion demonstrate a new analytic technique suggesting that, in a wide range of real-world cases, lock-free algorithms actually give wait-free performance.

"In practice, programmers program as if everything is wait-free," Shavit says. "This is a kind of mystery. What we are exposing in the paper is this little-talked-about intuition that programmers have about how [chip] schedulers work, that they are actually benevolent."

The researchers' key insight was that the chip's performance as a whole could be characterized more simply than the performance of the individual cores. That's because the allocation of different "threads," or chunks of code executed in parallel, is symmetric. "It doesn't matter whether thread 1 is in state A and thread 2 is in state B or if you just swap the states around," says Alistarh, who contributed to the work while at MIT. "What we noticed is that by coalescing symmetric states, you can simplify this a lot."

In a real chip, the allocation of threads to cores is "a complex interplay of latencies and scheduling policies," Alistarh says. In practice, however, the decisions arrived at through that complex interplay end up looking a lot like randomness. So the researchers modeled the scheduling of threads as a process that has at least a little randomness in it: At any time, there's some probability that a new thread will be initiated on any given core.

The researchers found that even with a random scheduler, a wide range of lock-free algorithms offered performance guarantees that were as good as those offered by wait-free algorithms.

That analysis held, no matter how the probability of thread assignment varied from core to core. But the researchers also performed a more specific analysis, asking what would happen when multiple cores were trying to write data to the same location in memory and one of them kept getting there ahead of the others. That's the situation that results in a lock-free algorithm's worst performance, when only one core is making progress.

For that case, they considered a particular set of probabilities, in which every core had the same chance of being assigned a thread at any given time. "This is kind of a worst-case random scheduler," Alistarh says. Even then, however, the number of cores that made progress never dipped below the square root of the number of cores assigned threads, which is still better than the minimum performance guarantee of lock-free algorithms.

.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Cisco pushes into 'cloud' with $1 bn investment
New York (AFP) March 24, 2014
Cisco Systems announced plans Monday to invest $1 billion to step up its cloud computing with several global partners. The California-based equipment maker said the alliance would build "the world's largest global Intercloud," or a network of clouds to support objects ranging from wearable devices to appliances to automobiles. Partners with Cisco in the project include Australia's Telstr ... read more


TECH SPACE
Sugar, not oil

Algae may be a potential source of biofuels and biochemicals even in cool climate

Renewable chemical ready for biofuels scale-up

Maverick and PPE To Make Small-scale Methane-to-Methanol Plants

TECH SPACE
Robotic arm probes chemistry of 3-D objects by mass spectrometry

'RoboClam' replicates a clam's ability to burrow while using little energy

The DARPA Grand Challenge: Ten Years Later

Soft robotic fish moves like the real thing

TECH SPACE
Australian wind energy industry growing up

Wind farms can provide society a surplus of reliable clean energy, Stanford study finds

A new algorithm improves the efficiency of small wind turbines

Taming hurricanes

TECH SPACE
Hyundai to build fourth China plant

Volvo Cars returns to profit on China sales, cost cuts

Polluted Paris forces half cars off the road

Gold-plated car shines at Geneva Motor Show

TECH SPACE
Economy in oil-rich North Dakota booming

Gazprom mulls LNG export future with Kuwait

Birth of a New Ukrainian Nation?

Russia Looks East as Relations with Europe Deteriorate

TECH SPACE
US, Japan in historic plutonium return deal

Study on element could change ballgame on radioactive waste

Shale could be long-term home for problematic nuclear waste

AREVA and Novinium to Provide Cable Rejuvenation Services to the Nuclear Industry

TECH SPACE
BTM Reduces Coolant Usage and Waste Removal Costs with QualiChem Fluids

Lessons offered by emerging carbon trading markets

GDF Suez starts operations at Omani power plants

ICLEI Launches "Climate Pathways" to Help Cities Fight Carbon Pollution

TECH SPACE
Amazon Inhales More Carbon than It Emits

Indonesian president intervenes in roaring forest blaze

Light pollution impairs rainforest regeneration

Agroforestry can ensure food security and mitigate the effects of climate change in Africa




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.