![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Lausanne, Switzerland (SPX) Oct 03, 2017
Perovskite solar cells (PSCs) can offer high light-conversion efficiency with low manufacturing costs. But to be commercially viable, perovskite films must also be durable and not degrade under solar light over time. EPFL scientists have now greatly improved the operational stability of PSCs, retaining more than 95% of their initial efficiencies of over 20 % under full sunlight illumination at 60oC for more than 1000 hours. The breakthrough, which marks the highest stability for perovskite solar cells, is published in Science. Conventional silicon solar cells have reached a point of maturation, with efficiencies plateauing around 25% and problems of high-cost manufacturing, heavyweight, and rigidity has remained largely unresolved. On the contrary, a relatively new photovoltaic technology based on perovskite solar cells has already achieved more than 22% efficiency. Given the vast chemical versatility, and the low-cost processability of perovskite materials, the PSCs hold the promise to lead the future of photovoltaic technology by offering cheap, light weight and highly efficient solar cells. But until now, only highly expensive, prototype organic hole-transporting materials (HTMs,selectively transporting positive charges in a solar cell) have been able to achieve power-conversion efficiencies over 20%. And by virtue of their ingredients, these hole-transporting materials adversely affect the long-term operational stability of the PSC. Therefore, investigating cheap and stable hole transporters that produce equally high efficiencies is in great demand to enable large-scale deployment of perovskite solar cells. Among various inorganic HTMs, cuprous thiocyanate (CuSCN) stands out as a stable, efficient and cheap candidate ($0.5/gr versus $500 /gr for the commonly used spiro-OMeTAD). But previous attempts to use CuSCN as a hole transporter in perovskite solar cells have yielded only moderately stabilized efficiencies and poor device stability, due to problems associated with depositing a high-quality CuSCN layer atop of the perovskite film, as wells as the chemical instability of the CuSCN layer when integrated into a perovskite solar cell.
A stable solution First, they developed a simple dynamic solution-based method for depositing highly conformal, 60-nm thick CuSCN layers that allows the fabrication of perovskite solar cells with stabilized power-conversion efficiencies exceeding 20%. This is comparable to the efficiencies of the best performing, state-of-the-art spiro-OMeTAD-based perovskite solar cells. Second, the scientists introduced a thin spacer layer of reduced graphene oxide between the CuSCN and a gold layer. This innovation allowed the perovskite solar cells to achieve excellent operational stability, retaining over 95% of their initial efficiency while operating at a maximum power point for 1000 hours under full-sun illumination at 60C. This surpasses even the stability of organic HTM-based perovskite solar cells that are heavily researched and have recently dominated the field. The researchers also discovered that the instability of the perovskite devices originates from the degradation of CuSCN/gold contact during the solar cell's operation. "This is a major breakthrough in perovskite solar-cell research and will pave the way for large-scale commercial deployment of this very promising new photovoltaic technology," says Michael Gratzel. "It will benefit the numerous scientists in the field that have been intensively searching for a material that could replace the currently used, prohibitively expensive organic hole-transporters," adds M. Ibrahim Dar.
![]() Ames IA (SPX) Oct 03, 2017 PrISUm is proud to announce our corporate partnership with Baron. PrISUm is the Iowa State University Solar Car Team, a student run organization which designs, builds, and races vehicles powered by the sun. Baron is a global provider of Critical Weather Intelligence to industry and government PrISUm's mission is to change the paradigm of transportation, and in doing so inspire future gener ... read more Related Links Ecole Polytechnique Federale de Lausanne All About Solar Energy at SolarDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |