Solar Energy News  
TECH SPACE
Using Photonics to Call Home
by Ashley Hume for GSFC News
Greenbelt MD (SPX) Oct 27, 2016


NASA is using photonics to solve some of the most pressing upcoming challenges in spaceflight, such as better data communications from space to Earth. Image courtesy NASA's Goddard Space Flight Center/Amber Jacobson, producer. Watch a video on the technology here.

A largely unrecognized field called photonics may provide solutions to some of NASA's most pressing challenges in future spaceflight. Photonics explores the many applications of generating, detecting and manipulating photons, or particles of light that, among other things, make up laser beams. On this day in 1983, the General Conference of Weights and Measures adopted the accepted value for the speed of light, an important photonics milestone.

Oct. 21, 2016, was a Day of Photonics, a biennial event to raise awareness of photonics to the general public. The study has multiple applications across NASA missions, from space communications to reducing the size of mission payloads to performing altitude measurements from orbit.

One major NASA priority is to use lasers to make space communications for both near-Earth and deep-space missions more efficient. NASA's communications systems have matured over the decades, but they still use the same radio-frequency (RF) system developed in the earliest days of the agency. After more than 50 years of using solely RF, NASA is investing in new ways to increase data rates while also finding more efficient communications systems.

Photonics may provide the solution. Several centers across NASA are experimenting with laser communications, which has the potential to provide data rates at least 10 to 100 times better than RF. These higher speeds would support increasingly sophisticated instruments and the transmission of live video from anywhere in the solar system. They would also increase the bandwidth for communications from human exploration missions in deep space, such as those associated with Journey to Mars.

NASA's Goddard Space Flight Center in Greenbelt, Maryland, launched the first laser communications pathfinder mission in 2013. The Lunar Laser Communications Demonstration (LLCD) proved that a space-based laser communications system was viable and that the system could survive both launch and the space environment. But the mission was short-lived by design, as the host payload crashed into the lunar surface in a planned maneuver a few months after launch.

The Goddard team is now planning a follow-on mission called the Laser Communications Relay Demonstration (LCRD) to prove the proposed system's longevity. It will also provide engineers more opportunity to learn the best way to operate it for near-Earth missions.

"We have been using RF since the beginning, 50 to 60 years, so we've learned a lot about how it works in different weather conditions and all the little things to allow us to make the most out of the technology, but we don't have that experience with laser comm," said Dave Israel, Exploration and Space Communications architect at Goddard and principal investigator on LCRD. "LCRD will allow us to test the performance over all different weather conditions and times of day and learn how to make the most of laser comm."

Scheduled to launch in 2019, LCRD will simulate real communications support, practicing for two years with a test payload on the International Space Station and two dedicated ground stations in California and Hawaii. The mission could be the last hurdle to implementing a constellation of laser communications relay satellites similar to the Space Network's Tracking and Data Relay Satellites.

NASA's Jet Propulsion Laboratory in Pasadena, California, and Glenn Research Center in Cleveland are also following up on LLCD's success. But both will focus on how laser communications could be implemented in deep-space missions.

Missions to deep space impose special communication challenges because of their distance from Earth. The data return on these missions slowly trickle back to the ground a little at a time using radio frequency. Laser communications could significantly improve data rates in all space regions, from low-Earth orbit to interplanetary.

JPL's concept, called Deep Space Optical Communications (DSOC), focuses on laser communications' benefits to data rates and to space and power constraints on missions. The data-rate benefits of laser communications for deep-space missions are clear, but less recognized is that laser communications can also save mass, space and/or power requirements on missions.

That could be monumental on missions like the James Webb Space Telescope, which is so large that, even folded, it will barely fit in the largest rocket currently available. Although Webb is an extreme example, many missions today face size constraints as they become more complex.

The Lunar Reconnaissance Orbiter mission carried both types of communications systems, and the laser system was half the mass, required 25 percent less power and transferred data at six times the rate of the RF system. Laser communications could also benefit a class of missions called CubeSats, which are about the size of a shoebox. These missions are becoming more popular and require miniaturized parts, including communications and power systems.

Power requirements can become a major challenge on missions to the outer solar system. As spacecraft move away from the sun, solar power becomes less viable, so the less power a payload requires, the smaller the spacecraft battery, saving space, and the easier spacecraft components can be recharged.

Laser communications could help to solve all of these challenges.

The team at Glenn is developing an idea called Integrated Radio and Optical Communications (iROC) to put a laser communications relay satellite in orbit around Mars that could receive data from distant spacecraft and relay their signal back to Earth. The system would use both RF and laser communications, promoting interoperability amongst all of NASA's assets in space. By integrating both communications systems, iROC could provide services both for new spacecraft using laser communications systems and older spacecraft like Voyager 1 that use RF.

But laser communications is not NASA's only foray into photonics, nor is it the first. In fact, NASA began using lasers shortly after they were invented. Goddard successfully demonstrated satellite laser ranging, a technique to measure distances, in 1964.

Satellite Laser Ranging is still managed at Goddard. The system uses laser stations worldwide to bounce short pulses of light off of special reflectors installed on satellites. There are also reflectors on the moon that were placed there during the Apollo and Soviet rover programs.

By timing the bounce of the pulses, engineers can compute distances and orbits. Measurements are accurate up to a few millimeters. This application is used on numerous NASA missions, such as ICESat-2, which will measure the altitude of the ice surface in the Antarctic and Greenland regions. It will provide important information regarding climate and the health of Earth's polar regions.

NASA's Satellite Laser Ranging system consists of eight stations covering North America, the west coast of South America, the Pacific, South Africa and western Australia. NASA and its partners and associated universities operate the stations. SLR is part of the larger International Laser Ranging Service, and NASA's contribution comprises more than a third of the organization's total data volume.

From communications to altimetry and navigation, photonics' importance to NASA missions cannot be understated. As technology continues to evolve, many photonics applications may come to fruition over the next several decades. Others may also be discovered, especially as humanity pushes further out into the universe than ever before.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Day of Photonics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
With great power comes great laser science
Vienna, Austria (SPX) Sep 15, 2016
It is a very unusual kind of laser: researchers at the photonics institute at TU Wien (Vienna) have built a device which emits ultrashort flashes of infrared light with extremely high energy. "It is very hard to combine these three properties - long infrared wavelength, short duration and high energy", says Valentina Shumakova. "But this combination is exactly what we need for many interes ... read more


TECH SPACE
State partnerships can promote increased bio-energy production, reduce emissions

Biomass heating could get a 'green' boost with the help of fungi

Algae discovery offers potential for sustainable biofuels

The road to green hydrogen runs through mazes in algal proteins

TECH SPACE
Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

US warned against Chinese takeover of German firm: report

Robotic cleaning technique could automate neuroscience research

Scientists simplify model for human behavior in automation

TECH SPACE
Cuomo announces major progress in offshore wind development

OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

TECH SPACE
Chinese ride-share king Didi Chuxing could go global

Long-vanished German car brand joins electric race

US judge approves massive VW emissions settlement

Driverless truck from Uber's Otto makes Colorado beer delivery

TECH SPACE
General atomics breakthrough enables greater control of fusion energy

Fusion reactor designs with 'long legs' show promise

From Germany comes a new twist for fusion research

High-storage sodium ion batteries

TECH SPACE
Rosatom Considers No Restrictions on Commercial Supplies of Uranium to US

A new method to help solve the problem of nuclear waste

Greenland uranium mining opponents join government

Bulgaria to pay Russia 600 mn euros for dropped nuclear plant

TECH SPACE
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

TECH SPACE
Brazil land grab threatens isolated tribes: activists

The fight against deforestation: Why are Congolese farmers clearing forest?

Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.