Solar Energy News  
STELLAR CHEMISTRY
Photons Struggle to Escape Distant Galaxies
by Staff Writers
London, UK (SPX) Jan 11, 2017


File image.

Astronomers led by David Sobral and Jorryt Matthee, of the Universities of Lancaster in the UK and Leiden in the Netherlands, respectively, have discovered giant halos around early Milky Way type galaxies, made of photons (elementary particles of light) that have struggled to escape them. The team reports its findings in the journal Monthly Notices of the Royal Astronomical Society.

In order to understand how our own Milky Way galaxy formed and evolved, astronomers rely on observing distant galaxies. As their light takes billions of years to reach us, telescopes can be used as time machines, as long as we have a clear indicator to pinpoint the distance to the objects being observed. As with closer galaxies, stars and planets, astronomers use the technique of spectroscopy to analyse their light, dispersing it into a spectrum.

Scientists then look for characteristic features (spectral lines) that tell them about properties including the composition, temperature and movement of the object. With the most distant galaxies, only one spectral feature typically stands out, the so-called Lyman-alpha line associated with hydrogen gas.

Jorryt Matthee comments: "Newly born stars in very distant galaxies are hot enough to break apart hydrogen in surrounding clouds of gas, which then shines brightly in Lyman-alpha light, in theory the strongest such features observable in a distant galaxy. Yet in practice, Lyman-alpha photons struggle to escape galaxies as gas and dust block and diverge their travel paths, making it a complex process to understand."

Using the Isaac Newton Telescope (INT) on La Palma in the Canary Islands, astronomers developed a unique experiment to study almost 1,000 distant galaxies. They surveyed the sky using the Wide Field Camera and custom-made filters, in order to measure where the Lyman-alpha is produced, how much of it there is, and where it comes out of galaxies.

David Sobral says: "We have used dozens of dedicated nights on the INT to understand how Lyman-alpha photons escape, and from which galaxies. We looked back in time 11 billion years, essentially the limit of where we can identify distant galaxies and study them in detail. Most importantly, we were able to predict accurately how many Lyman-alpha photons were effectively produced in each galaxy and where this happened. Then we compared them with the ones that actually reach the INT."

The results show that only 1-2% of those photons escape from the centres of galaxies like the Milky Way. Even if we account for all the photons at a large distance from the centre, fewer than 10% escape.

"Galaxies forming stars in the distant universe seem to be surrounded by an impressively large, faint halo of Lyman-alpha photons that had to travel for hundreds of thousands of light-years in an almost endless series of absorption and re-emission events, until they were finally free. We now need to understand exactly how and why that happens," adds Sobral.

When the James Webb Space Telescope begins operation in 2018, astronomers expect to be able to look even further back in time, opening up a new window on the first galaxies and stars. Studying how the escape fraction evolves over time can tell us about the kind of stars producing these photons, and the properties of interstellar and intergalactic gas.

Research paper: "The CALYMHA Survey: Ly-alpha Luminosity Function and Global Escape Fraction of Ly-alpha Photons at z = 2.23," David Sobral, Jorryt Matthee, Philip Best, Andra Stroe, Huub Rottgering, Ivan Oteo, Ian Smail, Leah Morabito and Ana Paulino-Afonso, 2017, to appear in Monthly Notices of the Royal Astronomical Society and "The CALYMHA Survey: Ly-alpha Escape Fraction and Its Dependence On Galaxy Properties at z = 2.23," Jorryt Matthee, David Sobral, Ivan Oteo, Philip Best, Ian Smail, Huub Rottgering and Ana Paulino-Afonso, 2016 May 1, Monthly Notices of the Royal Astronomical Society.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Gemini: exploring a fast radio burst in 3 dimensions
Washington DC (SPX) Jan 05, 2017
Fast Radio Bursts (FRBs), sudden rapid explosions of energy from space, have challenged astronomers since their discovery in 2007. Typically lasting only a few milliseconds, many questions remain, including what powers these bursts, their distance beyond our galaxy, and what their host galaxies might look like. "Now, thanks to deep Gemini observations, we know that at least one of these FR ... read more


STELLAR CHEMISTRY
Dual-purpose biofuel crops could extend production, increase profits

Open-source plant database confirms top US bioenergy crop

WSU researchers discover unique microbial photosynthesis

Potential biofuel crops in Hawaii may successfully sequester carbon in soil

STELLAR CHEMISTRY
How to control the unknown: Novel method for robotic manipulation

China turns to robots as workers age

Brazil orders remote-controlled weapon stations from Elbit

Baidu family robot a Chinese spin on Amazon Echo

STELLAR CHEMISTRY
New York sets bar high for offshore wind

The answer is blowing in the wind

French power group aims to double wind capacity

New rules for micro-grids in Alberta

STELLAR CHEMISTRY
New technology will cut plug-in hybrid fuel consumption by one third

VW directors knew of emissions scandal earlier: press

NAVYA Self-driving shuttle goes to work in Las Vegas

Cadillac keeps plan to sell Chinese-made cars in US

STELLAR CHEMISTRY
UK-Led Hydrogen Fuel Project Promises to Provide Ultra-Clean Air in China

Scientists discover a molecular motor has a 'gear' for directional switching

Rolling out an e-sticker revolution

Tenfold jump in green tech needed to meet global emissions targets

STELLAR CHEMISTRY
France sells off Engie stake to finance Areva rescue

EU clears French rescue of troubled nuclear firm Areva

UK asks regulators to assess Chinese nuclear reactor

Controversial nuclear power plant near New York to close

STELLAR CHEMISTRY
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

STELLAR CHEMISTRY
Philippine minister says Dora can't explore pristine Palawan

Study: Trees with thicker bark are more resistant to fire

Measuring trees with the speed of sound

In cool forests, foraging bees prefer the warmth of darker flower petals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.