Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Photons run out of loopholes
by Staff Writers
Vienna, Austria (SPX) Apr 17, 2013


Lab IQOQI, Vienna 2012. Image courtesy Jacqueline Godany.

A team led by the Austrian physicist Anton Zeilinger has now carried out an experiment with photons, in which they have closed an important loophole. The researchers have thus provided the most complete experimental proof that the quantum world is in conflict with our everyday experience. The results of this study appear this week in the renowned journal Nature (Advance Online Publication/AOP).

When we observe an object, we make a number of intuitive assumptions, among them that the unique properties of the object have been determined prior to the observation and that these properties are independent of the state of other, distant objects. In everyday life, these assumptions are fully justified, but things are different at the quantum level.

In the past 30 years, a number of experiments have shown that the behaviour of quantum particles - such as atoms, electrons or photons - can be in conflict with our basic intuition.

However, these experiments have never delivered definite answers. Each previous experiment has left open the possibility, at least in principle, that the observed particles 'exploited' a weakness of the experimental setup.

Quantum physics is an exquisitely precise tool for understanding the world around us at a very fundamental level. At the same time, it is a basis for modern technology: semiconductors (and therefore computers), lasers, MRI scanners, and numerous other devices are based on quantum-physical effects.

However, even after more than a century of intensive research, fundamental aspects of quantum theory are not yet fully understood. On a regular basis, laboratories worldwide report results that seem at odds with our everyday intuition but that can be explained within the framework of quantum theory.

On the trail of the quantum entanglement mystery
The physicists in Vienna report not a new effect, but a deep investigation into one of the most fundamental phenomena of quantum physics, known as 'entanglement.'

The effect of quantum entanglement is amazing: when measuring a quantum object that has an entangled partner, the state of the one particle depends on measurements performed on the partner.

Quantum theory describes entanglement as independent of any physical separation between the particles. That is, entanglement should also be observed when the two particles are sufficiently far apart from each other that, even in principle, no information can be exchanged between them (the speed of communication is fundamentally limited by the speed of light). Testing such predictions regarding the correlations between entangled quantum particles is, however, a major experimental challenge.

Towards a definitive answer
The young academics in Anton Zeilinger's group including Marissa Giustina, Alexandra Mech, Rupert Ursin, Sven Ramelow and Bernhard Wittmann, in an international collaboration with the National Institute of Standards and Technology/NIST (USA), the Physikalisch-Technische Bundesanstalt (Germany), and the Max-Planck-Institute of Quantum Optics (Germany), have now achieved an important step towards delivering definitive experimental evidence that quantum particles can indeed do things that classical physics does not allow them to do.

For their experiment, the team built one of the best sources for entangled photon pairs worldwide and employed highly efficient photon detectors designed by experts at NIST.

These technological advances together with a suitable measurement protocol enabled the researchers to detect entangled photons with unprecedented efficiency. In a nutshell: "Our photons can no longer duck out of being measured," says Zeilinger.

This kind of tight monitoring is important as it closes an important loophole. In previous experiments on photons, there has always been the possibility that although the measured photons do violate the laws of classical physics, such non-classical behaviour would not have been observed if all photons involved in the experiment could have been measured.

In the new experiment, this loophole is now closed. "Perhaps the greatest weakness of photons as a platform for quantum experiments is their vulnerability to loss - but we have just demonstrated that this weakness need not be prohibitive," explains Marissa Giustina, lead author of the paper.

Now one last step
Although the new experiment makes photons the first quantum particles for which, in several separate experiments, every possible loophole has been closed, the grand finale is yet to come, namely, a single experiment in which the photons are deprived of all possibilities of displaying their counterintuitive behaviour through means of classical physics.

Such an experiment would also be of fundamental significance for an important practical application: 'quantum cryptography,' which relies on quantum mechanical principles and is considered to be absolutely secure against eavesdropping. Eavesdropping is still theoretically possible, however, as long as there are loopholes. Only when all of these are closed is a completely secure exchange of messages possible.

An experiment without any loopholes, says Zeilinger, "is a big challenge, which attracts groups worldwide." These experiments are not limited to photons, but also involve atoms, electrons, and other systems that display quantum mechanical behaviour. The experiment of the Austrian physicists highlights the photons' potential.

Thanks to these latest advances, the photon is running out of places to hide, and quantum physicists are closer than ever to conclusive experimental proof that quantum physics defies our intuition and everyday experience to the degree suggested by research of the past decades.

Bell violation with entangled photons, free of the fair-sampling assumption: Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittmann, Johannes Kofler, Jorn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, Anton Zeilinger. In: Nature (Advance Online Publication/AOP). April 14, 2013. DOI: 10.1038/nature12012

.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
On wings of light
Munich, Germany (SPX) Apr 06, 2013
LMU physicists have, for the first time, successfully transmitted a secure quantum code through the atmosphere from an aircraft to a ground station. Can worldwide communication ever be fully secure? Quantum physicists believe they can provide secret keys using quantum cryptography via satellite. Unlike communication based on classical bits, quantum cryptography employs the quantum states o ... read more


TIME AND SPACE
NREL Survey Shows Dramatic Improvement in B100 Biodiesel Quality

Surprising findings on hydrogen production in green algae

Enzymes from horse feces could hold secrets to streamlining biofuel production

Cost-saving measure to upgrade ethanol to butanol -- a better alternative to gasoline

TIME AND SPACE
Swarming robots could be the servants of the future

Robot ants successfully mimic real colony behavior

Small swarm of robots could do tasks

Robots joining China businesses, factories

TIME AND SPACE
U.S. leads in wind installations

Providing Capital and Technology, GE is Farming the Wind in America's Heartland with Enel Green Power

Wind skeptic British minister replaced

Using fluctuating wind power

TIME AND SPACE
Toyota hybrid sales over 1.2 mn in a year: firm

Compact multipurpose scooter for crowded megacities

Flap-backed lorries to save lives, energy in Europe

China March auto sales hit record high: group

TIME AND SPACE
UCLA engineers craft new material for high-performing 'supercapacitors'

Small in size, big on power: New microbatteries a boost for electronics

Lockheed Martin and Reignwood Group to Develop Ocean Thermal Energy Conversion Power Plant

Stage set for battle over Canada-US pipeline

TIME AND SPACE
Bulgarian nuclear plant shuts down reactor

Iranian leader steers clear of talking uranium in Niger

GCC states demand IAEA inspections on Iran nuclear plant

EU to probe Bulgaria energy sector

TIME AND SPACE
Renewable Energy Won't Stop Climate Change

Is Tunisia the New Hot Spot for Energy Investors?

Jordan scrambles to secure energy resources

ADB report warns on Asian energy

TIME AND SPACE
New research challenges assumptions about effects of global warming on mountain tree line

Brazil's indigenous protest to defend ancestral lands

Activist silenced as China island forests destroyed

SFU researchers help unlock pine beetle's Pandora's box




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement