Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Physicist Helps Discover Subatomic Particles
by Staff Writers
Syracuse NY (SPX) Nov 20, 2014


A pink glow illuminates the inside of this model of the LHC beam pipe, which is used to train engineers and technicians at CERN. Image courtesy Guillaume Jeanneret and CERN.

A physicist in the College of Arts and Sciences is the lead contributor to the discovery of two never-before-seen baryonic particles. The finding, which is the subject of a forthcoming article in Physical Review Letters (American Physical Society, 2014), is expected to have a major impact on the study of quark dynamics.

Steven Blusk, associate professor of physics, has identified particles known as Xi_b'- and Xi_b*-. Although the particles had been predicted to exist, nobody had seen them until now. The discovery is part of his ongoing work at the Large Hadron Collider beauty (LHCb) experiment at CERN in Geneva, Switzerland.

"The particles we've discovered are quite unique," says Blusk, a leader in experimental high-energy particle physics. "Each one contains a beauty [b] quark, a strange [s] quark and a down [d] quark."

A baryon is a subatomic particle made up of three quarks, bound together by strong force. Two other familiar baryons, the proton and neutron, combine with the electron to form all the known elements of the periodic table.

"The building blocks of all known things, including cars, planets, stars and people, are quarks and electrons, which are tied together by strong, electromagnetic forces," Blusk says. Unique to each newly discovered particle is its mass, which is approximately six times larger than that of the proton. Blusk attributes its size to the presence of a heavyweight b quark and to the particle's angular momentum-a property known as "spin."

In the Xi_b'- state, the spins of the two lighter quarks point in opposite directions; in the Xi_b*- state, they are aligned. The difference is what makes the Xi_b*- a little heavier.

"The Xi_b'- is close in mass to the sum of the masses of its decay products. If it had been just a little lighter, we wouldn't have seen it at all," Blusk adds.

Much of Blusk's work draws on the theory of Quantum Chromodynamics, which describes the interaction of quarks. As a result, he and his colleagues have studied the masses of both particles, along with their relative production rates, widths and decays.

"This is a very exciting result," Blusk adds. "Thanks to LHCb's excellent hadron identification, which is unique among LHC experiments, we've been able to separate a clean, strong signal from the background. It demonstrates, once again, both the sensitivity and precision of the LHCb detector."

Blusk is part of a team of Syracuse researchers, led by Distinguished Professor of Physics Sheldon Stone, working at CERN, which is the world's leading laboratory for particle physics.

There, they have been involved with the LHCb experiment, which seeks to identify new forces and particles, in addition to those already known and codified in the Standard Model, a theory describing the physical makeup of the visible Universe.

"Fourteen billion years ago, the Universe began with a bang, and matter and anti-matter were formed," Stone says. "But just one second after the Big Bang, anti-matter all but disappeared. ... The LHCb experiment is designed to find out what really happened after the Big Bang that has allowed matter to survive and build the Universe we inhabit today."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Syracuse University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
New model clarifies photoexcited thin-film lattice dynamics
Washington DC (SPX) Nov 19, 2014
A research team from Germany developed an analytical model to describe the structural dynamics of photoexcited thin films and verified it by ultrafast X-ray diffraction. Lattice dynamics, atomic movements in a crystal structure, can influence the physical and chemical properties of a material. The phenomenon can be directly studied using ultrafast X-ray diffraction, in which femtosecond X- ... read more


TIME AND SPACE
WELTEC builds Biogas Plants in Greece

Lockheed Martin to build 5-megawatt bioenergy facility in Germany

Researchers find way to turn sawdust into gasoline

Exploding excrement topples building in China

TIME AND SPACE
An alternative to 'Turing Test'

Can robots help stop the Ebola outbreak?

Elon Musk thinks robots could turn on us in the next five years

DARPA-Funded Inflatable Robotics Helps Spark Idea for Silver Screen Star

TIME AND SPACE
New acreage available for U.S. offshore wind energy

Labor building behind East Coast wind energy industry

AREVA maintenance contract for five years renewed in the North Sea

Moventas completes first ever Clipper up-tower service

TIME AND SPACE
Sydney International Airport Tests the World's Longest Range Electric Bus

Dongfeng, Huawei partner for Internet-enabled cars

Uber hits brakes on talk of finding dirt on reporters

Toyota rolls out world's first mass market fuel-cell car

TIME AND SPACE
Hybrid Ferry MF Finnoy Completes Three-Month Trial

Germany eyes capping coal use to meet emissions target

Chinese power companies pursue smart grids

China seeks to cap coal use at 4.2 bn tonnes by 2020

TIME AND SPACE
Much to lose for Iran's Rouhani if no nuclear pact

Understanding nuclear reactor fuel behavior during a severe event

Jordan says able to export uranium by 2020

Iran refuses to give ground on key Arak reactor

TIME AND SPACE
Bit Stew Systems Announce Major Expansion in Australia

After nuclear phase-out, Germany debates scrapping coal

China's new 'Great Wall' not so great

China eyes investments in Slovenia infrastructure

TIME AND SPACE
Aggressive conifer removal benefits Sierra aspen

As elephants go, so go the trees

Clues to trees' salt tolerance found in native habitat, leaf traits

Deforestation in Brazil's Amazon 'surges 450%'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.