Solar Energy News  
TECH SPACE
Physicist accelerates simulations of thin film growth

The University of Toledo's Jacques Amar, Ph.D., leveraged Ohio Supercomputer Center systems to test an accelerated approach to simulating thin film growth. Using two different models (fcc and SOS), Amar compared the regular Kinetic Monte Carlo method (figures A and C) with a first-passage-time approach coupled with the KMC method (figures B and D). Credit: Amar/University of Toledo
by Staff Writers
Toledo OH (SPX) May 19, 2011
A Toledo, Ohio, physicist has implemented a new mathematical approach that accelerates some complex computer calculations used to simulate the formation of micro-thin materials.

Jacques Amar, Ph.D., professor of physics at the University of Toledo (UT), studies the modeling and growth of materials at the atomic level. He uses Ohio Supercomputer Center (OSC) resources and Kinetic Monte Carlo (KMC) methods to simulate the molecular beam epitaxy (MBE) process, where metals are heated until they transition into a gaseous state and then reform as thin films by condensing on a wafer in single-crystal thick layers.

"One of the main advantages of MBE is the ability to control the deposition of thin films and atomic structures on the atomic scale in order to create nanostructures," explained Amar.

Thin films are used in industry to create a variety of products, such as semiconductors, optical coatings, pharmaceuticals and solar cells.

"Ohio's status as a worldwide manufacturing leader has led OSC to focus on the field of advanced materials as one of our areas of primary support," noted Ashok Krishnamurthy, co-interim co-executive director of the center. "As a result, numerous respected physicists, chemists and engineers, such as Dr. Amar, have accessed OSC computation and storage resources to advance their vital materials science research."

Recently, Amar leveraged the center's powerful supercomputers to implement a "first-passage time approach" to speed up KMC simulations of the creation of materials just a few atoms thick.

"The KMC method has been successfully used to carry out simulations of a wide variety of dynamical processes over experimentally relevant time and length scales," Amar noted. "However, in some cases, much of the simulation time can be 'wasted' on rapid, repetitive, low-barrier events."

While a variety of approaches to dealing with the inefficiencies have been suggested, Amar settled on using a first-passage-time (FPT) approach to improve KMC processing speeds. FPT, sometimes also called first-hitting-time, is a statistical model that sets a certain threshold for a process and then estimates certain factors, such as the probability that the process reaches that threshold within a certain amount time or the mean time until which the threshold is reached.

"In this approach, one avoids simulating the numerous diffusive hops of atoms, and instead replaces them with the first-passage time to make a transition from one location to another," Amar said.

In particular, Amar and colleagues from the UT department of Physics and Astronomy targeted two atomic-level events for testing the FPT approach: edge-diffusion and corner rounding. Edge-diffusion involves the "hopping" movement of surface atoms - called adatoms - along the edges of islands, which are formed as the material is growing. Corner rounding involves the hopping of adatoms around island corners, leading to smoother islands.

Amar compared the KMC-FPT and regular KMC simulation approaches using several different models of thin film growth: Cu/Cu(100), fcc(100) and solid-on-solid (SOS). Additionally, he employed two different methods for calculating the FPT for these events: the mean FPT (MFPT), as well as the full FPT distribution.

"Both methods provided "very good agreement" between the FPT-KMC approach and regular KMC simulations," Amar concluded. "In addition, we find that our FPT approach can lead to a significant speed-up, compared to regular KMC simulations."

Amar's FPT-KMC approach accelerated simulations by a factor of approximately 63 to 100 times faster than the corresponding KMC simulations for the fcc(100) model. The SOS model was improved by a factor of 36 to 76 times faster. For the Cu/Cu(100) tests, speed-up factors of 31 to 42 and 22 to 28 times faster were achieved, respectively, for simulations using the full FPT distribution and MFPT calculations.

Amar's research was supported through multiple grants from the National Science Foundation, as well as by a grant of computer time from OSC. A paper co-authored by Amar and UT colleagues Giridhar Nandipati and Yunsic Shim, "First-passage time approach to kinetic Monte Carlo simulations of metal (100) growth," appeared in a recent issue of the journal Physical Review B.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Ohio Supercomputer Center
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TECH SPACE
Research questions reality of supersolid in Helium-4
Los Alamos NM (SPX) May 19, 2011
The long-held, but unproven idea that helium-4 enters into an exotic phase of matter dubbed a "supersolid" when cooled to extremely low temperatures has been challenged in a new paper published recently in Science. Los Alamos National Laboratory researchers Alexander Balatsky and Matthias Graf joined Cornell University physicist J.C. Seamus Davis and others in describing an alternative exp ... read more







TECH SPACE
Same fungus just different strains

Multi-junction solar cells help turn plants into powerhouses

Eucalyptus tree genome deciphered

Turning plants into power houses

TECH SPACE
Controlling robotic arms is child's play

Researchers demonstrate autonomous robots able to explore and map buildings

Tiny robots map buildings -- without help

Robot Based on Carnegie Mellon Research Engages Novice Computer Scientists

TECH SPACE
Evolutionary lessons for wind farm efficiency

Global warming won't harm wind energy production, climate models predict

Study: Warming won't lessen wind energy

Mortenson Construction to Build its 100th Wind Project

TECH SPACE
Japan carmakers to work over weekend: industry body

Japanese electric car 'goes 300km' on single charge

Perfect welds for car bodies

Saab, Spyker announce auto deal in China

TECH SPACE
Oil prices slide as IEA issues gloomy demand warning

Newly Installed Alaska North Slope Well Will Test Hydrate Production Tech

Nord Stream costs Ukraine $720 million

Iraq sticks with lofty oil plan -- for now

TECH SPACE
2 graphene layers may be better than 1

Diamonds shine in quantum networks

Climate Change From Black Carbon Depends On Altitude

New Fracture Resistance Mechanisms Provided By Graphene

TECH SPACE
Power plants vulnerable to hackers: security firm

Pakistan PM asks for China energy investment

India's telecom sector fueling emissions

US presses green growth in Asia

TECH SPACE
Brazil creates office to fight deforestation

Will global climate change enhance boreal forest growth

Reforestation research in Latin America helps build better forests

Reforesting rural lands in China pays big dividends


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement