Solar Energy News  
TECH SPACE
Physicist solves century old problem of radiation reaction
by Staff Writers
Lancaster UK (SPX) Jan 26, 2022

Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streaming From Centre of Galaxy c; the blue light is Synchrotron radiation which should produce radiation reaction.

A Lancaster physicist has proposed a radical solution to the question of how a charged particle, such as an electron, responded to its own electromagnetic field.

This question has challenged physicists for over 100 years but mathematical physicist Dr Jonathan Gratus has suggested an alternative approach - published in the Journal of Physics A- with controversial implications.

It is well established that if a point charge accelerates it produces electromagnetic radiation. This radiation has both energy and momentum, which must come from somewhere. It is usually assumed that they come from the energy and momentum of the charged particle, damping the motion.

The history of attempts to calculate this radiation reaction (also known as radiation damping) date back to Lorentz in 1892. Major contributions were then made by many well known physicists including Plank, Abraham, von Laue, Born, Schott, Pauli, Dirac and Landau. Active research continues to this day with many articles published every year.

The challenge is that according to Maxwell's equations, the electric field at the actual point where the point particle is, is infinite. Hence the force on that point particle should also be infinite.

Various methods have been used to renormalise away this infinity. This leads to the well established Lorentz-Abraham-Dirac equation.

Unfortunately, this equation has well known pathological solutions. For example, a particle obeying this equation may accelerate forever with no external force or accelerate before any force is applied. There is also the quantum version of radiation damping. Ironically, this is one of the few phenomena where the quantum version occurs at lower energies than the classical one.

Physicists are actively searching for this effect. This requires `colliding' very high energy electrons and powerful laser beams, a challenge as the biggest particle accelerators are not situated near the most powerful lasers. However, firing lasers into plasmas will produce high energy electron, which can then interact with the laser beam. This only requires a powerful laser. Current results show that quantum radiation reaction does exist.

The alternative approach is to consider many charged particles, where each particle responds to the fields of all the other charged particles, but not itself. This approach was hitherto dismissed, since it was assumed that this would not conserve energy and momentum.

However, Dr Gratus shows that this assumption is false, with the energy and momentum of one particle's radiation coming from the external fields used to accelerate it.

He said: "The controversial implications of this result is that there need not be classical radiation reaction at all. We may therefore consider the discovery of quantum radiation reaction as similar to the discovery of Pluto, which was found following predictions based on discrepancies in the motion of Neptune. Corrected calculations showed there were no discrepancies. Similarly radiation reaction was predicted, found and then shown not to be needed."

Research Report: "Maxwell-Lorentz without self-interactions: conservation of energy and momentum"


Related Links
Lancaster University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Scientists invent lead-free composite shielding material for neutron and gamma-ray
Hefei, China (SPX) Jan 01, 2022
Dr. HUO Zhipeng and his student ZHAO Sheng from the Hefei Institutes of physical science (HFIPS) of the Chinese Academy of Sciences recently developed a lead-free neutron and gamma ray composite shielding material that has high shielding properties and is environmentally friendly. Their results were published on Nuclear Materials and Energy. The composite, modified-gadolinium oxide/boron carbide/high density polyethylene (Gd2O3/B4C/HDPE), was tested safe and effective to shield neutron and gamma r ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Getting hydrogen out of banana peels

Scientists build bioreactors and engineer bacteria to advance biofuel research

Creating sustainable material from waste

Mapping the photosynthetic properties of the fastest growing alga in the world

TECH SPACE
Enabling artificial intelligence on satellites

How robots learn to hike

RACER revs up for checkered flag goal of high-speed, off-road autonomy

Kirigami robotic grippers are delicate enough to lift egg yolks

TECH SPACE
Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

'Ocean battery' targets renewable energy dilemma

TECH SPACE
GM to spend $7 bn in Michigan to build electric auto capacity

Volkswagen hits 2021 EU emissions target after 2020 miss

Bentley says first luxury electric car due 2025

Tesla reports record profit, sees more supply chain woes in 2022

TECH SPACE
Researchers achieve burning plasma regime for first time in lab

First hydride superionic conductor developed, implications for sustainable energy

How a smart electric grid will power our future

Form fit: Device wraps around hot surfaces, turns wasted heat to electricity

TECH SPACE
Japan to help with Bill Gates' next-gen nuclear power project

Britain injects 100m pounds into Sizewell C nuclear project

Iran says in talks with Russia to build nuclear power units

Austria gears up to fight EU 'green' nuclear energy plan

TECH SPACE
EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

World risks more years of high energy prices, emissions: IEA

Idaho researchers unveil enhanced electric power grid test bed

TECH SPACE
Penn State gets grant to teach private forest owners to adapt to climate change

Future forests will have smaller trees and soak up less carbon, study suggests

Just what is a 'resilient' forest, anyway?

Land battle awaits Indigenous communities over Indonesia capital relocation: NGO









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.