Solar Energy News  
SOLAR DAILY
Physicists develop ideal testing conditions of solar cells for space applications
by Staff Writers
Norman OK (SPX) May 04, 2022

stock illustration only

Researchers at the University of Oklahoma, with the National Renewable Energy Laboratory, the University of North Texas, the NASA Glenn Research Center and several collaborators within the space power community, have recently published a paper in the journal Joule that describes the optimal conditions for testing perovskite solar cells for space.

Perovskites are a material used in a type of solar cell, which are devices that convert light into electrical energy. Ian Sellers, a physicist at the University of Oklahoma and a co-author of the paper, said perovskite solar cells are creating excitement in the photovoltaics community due to their rapidly increasing performance and their high tolerance to radiation that suggests they could be used to provide power for space satellites and spacecrafts.

Sellers, who is also the Ted S. Webb Presidential Professor in the Homer L. Dodge Department of Physics and Astronomy in the Dodge Family College of Arts and Sciences, and the associate director of the Oklahoma Photovoltaics Research Institute, has mentored multiple graduate students and a postdoctoral researcher in this field. The former postdoctoral researcher in Seller's lab, Brandon Durant, is now a National Research Council Fellow residing at the U.S. Naval Research Laboratory and is one of the co-authors of the paper.

"Perovskites are exciting to a lot of people in the photovoltaics community because this new solar cell material can reach high efficiencies and has done so quickly and relatively simply," Sellers said. "But these materials also have significant issues in terms of stability and yield, particularly in atmospheric conditions - moisture, oxygen degrades this material, so it was interesting that there were a few people who suggested that despite these terrestrial instability issues, this system appeared radiation hard and appropriate for space."

"The term 'radiation hard' is used by researchers to describe how much damage occurs in an object or device when it is a space environment," said Joseph Luther, a senior scientist on the chemical materials and nanoscience team at the National Renewable Energy Laboratory. "It's interesting, especially with perovskite materials, because the semiconductors are known to be soft, however radiation hardness just means that they can tolerate the radiation induced defects without a rapid degradation in performance."

The problem the team from OU, NREL and the University of North Texas set out to solve was how applicable standard space testing of solar cells are for the perovskites.

"What we found was that perovskites are radiation hard but not for the reasons many believed," Sellers said. "We found that the community in general is not testing them properly. Perovskites are thin films, and they are also very soft, so if you use the space protocols developed for traditional solar cells, the interaction of high-energy particles is negligible, meaning perovskites looked radiation hard because they weren't, in our opinion, being tested properly."

To develop a new way to test the perovskites, Durant worked with Bibhudutta Rout, an associate professor in the Department of Physics at UNT in Denton, Texas, to measure the solar cells' radiation hardness under different conditions or radiation exposure.

"We started doing these very targeted radiation dependence tests by controllably stopping these particles in different parts of the solar cell," Sellers said. "So rather than using very high-energy particles, we were using lower-energy particles, specifically protons, since these are more harmful for the perovskites and are very prevalent in space, bombarding solar cells and other materials in space at low energies. When we did this, we confirmed that perovskites indeed are very radiation hard because they're soft and they're not very dense, so when they're damaged, they heal quickly."

Sellers compares the effect to a tub of water. The water starts out as still. You can splash the water to create chaos, but it will go back to stillness once the splashing stops.

"These perovskites are very close to being like a liquid, so when they're damaged, they self-heal," he said. "Perovskites, like a tub of water, will be disordered and damaged in space, but will also very quickly settle or heal and go back to normal. What we've done is to create a protocol, a set of conditions that perovskite cells must be tested at before they go into space, so that the global community is testing these materials properly and in the same way."

Applications for this research opens an array of possibilities. One area of research interest includes the investigation of perovskites' use in permanent installations on the moon, specifically in whether lightweight flexible perovskites could be sent into space folded up and successfully deployed there, or even made on the moon.

Likewise, future research could explore the utility of perovskite solar cells for space missions to planets like Jupiter that have an intense radiation environment or for satellite missions in polar orbits with high radiation levels.

"Space qualification of a new material is driven by mission requirements," said NASA Glenn Research engineer and co-author, Lyndsey McMillon-Brown. "This work is so important because we're probing the perovskites' response to radiation most relevant to the applications NASA is most interested in."

"By coming together and defining some protocols that the federal and the commercial space community have agreed with on the way these should be tested is a significant step forward that is pioneering for how perovskites could be deployed in space," Sellers said.

Research Report:"Countdown to perovskite space launch: Guidelines to performing relevant radiation-hardness experiments"


Related Links
University of Oklahoma
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
How solving Central Asia's water-energy conflict could boost renewable energy
Vienna, Austria (SPX) May 04, 2022
researchers from the iiasa energy, climate, and environment program found that agricultural efforts in downstream countries in central asia, traditionally hampered by a lack of water for irrigation during the summer growing season, would be significantly boosted with a "dual water and energy storage scheme", which also paves the way for high shares of renewable energy generation in the region. behnam zakeri, the lead author of the open-access paper published in the journal of energy storage, expla ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Mystery solved about active phase in catalytic CO2 reduction to methanol

Using human energy to heat buildings will pay off

Dung power: India taps new energy cash cow

Biden's biofuel: Cheaper at the pump, but high environmental cost?

SOLAR DAILY
MDA completes first commercial sale of Canadarm3 technology to Axiom space

Shaping the future of photonic sensing: Advanced Navigation acquires Vai Photonics

Unpacking black-box models

Soft assistive robotic wearables get a boost from rapid design tool

SOLAR DAILY
Transport drones for offshore wind farms

Lack of marshaling ports hindering offshore wind industry

Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

SOLAR DAILY
Sudan's electric rickshaws cut costs, help environment

Tesla recalls second batch of cars in China on safety concerns

German prosecutors conduct raids in Suzuki diesel probe

GM announces it will make electric Corvette

SOLAR DAILY
Dual membrane offers hope for long-term energy storage

Using excess heat to improve electrolyzers and fuel cells

Machine learning, harnessed to extreme computing, aids fusion energy development

Electric, low-emissions alternatives to carbon-intensive industrial processes

SOLAR DAILY
Finnish group scraps nuclear plant deal with Russia's Rosatom

'Operating normally': Russia shows seized Ukraine nuclear plant

Philippines could revive nuclear plant if Marcos wins presidency

Framatome selected to support component modernizations at Forsmark Nuclear Power Plant

SOLAR DAILY
Canada stumbling in transition to low-carbon economy

EU needs to recycle more to hit green energy goals: report

Paris climate targets feasible if nations keep vows

Lots of low- and no-cost ways to halt global warming

SOLAR DAILY
Brazil responds to less than 3% of deforestation alerts: study

Greenpeace urges DR Congo to probe illegal forestry concessions

Brazil deforestation shatters April record

Parisians up in arms over plan to fell trees near Eiffel Tower









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.