Solar Energy News  
TECH SPACE
Physicists excited by discovery of new form of matter, excitonium
by Staff Writers
Champaign IL (SPX) Dec 14, 2017


This is an artist's depiction of the collective excitons of an excitonic solid. These excitations can be thought of as propagating domain walls (yellow) in an otherwise ordered solid exciton background (blue).

Excitonium has a team of researchers at the University of Illinois at Urbana-Champaign... well... excited! Professor of Physics Peter Abbamonte and graduate students Anshul Kogar and Mindy Rak, with input from colleagues at Illinois, University of California, Berkeley, and University of Amsterdam, have proven the existence of this enigmatic new form of matter, which has perplexed scientists since it was first theorized almost 50 years ago.

The team studied non-doped crystals of the oft-analyzed transition metal dichalcogenide titanium diselenide (1T-TiSe2) and reproduced their surprising results five times on different cleaved crystals. University of Amsterdam Professor of Physics Jasper van Wezel provided crucial theoretical interpretation of the experimental results.

What exactly is excitonium?
Excitonium is a condensate - it exhibits macroscopic quantum phenomena, like a superconductor, or superfluid, or insulating electronic crystal. It's made up of excitons, particles that are formed in a very strange quantum mechanical pairing, namely that of an escaped electron and the hole it left behind.

It defies reason, but it turns out that when an electron, seated at the edge of a crowded-with-electrons valence band in a semiconductor, gets excited and jumps over the energy gap to the otherwise empty conduction band, it leaves behind a "hole" in the valence band. That hole behaves as though it were a particle with positive charge, and it attracts the escaped electron. When the escaped electron with its negative charge, pairs up with the hole, the two remarkably form a composite particle, a boson - an exciton.

In point of fact, the hole's particle-like attributes are attributable to the collective behavior of the surrounding crowd of electrons. But that understanding makes the pairing no less strange and wonderful.

Why has excitonium taken 50 years to be discovered in real materials?
Until now, scientists have not had the experimental tools to positively distinguish whether what looked like excitonium wasn't in fact a Peierls phase. Though it's completely unrelated to exciton formation, Peierls phases and exciton condensation share the same symmetry and similar observables - a superlattice and the opening of a single-particle energy gap.

Abbamonte and his team were able to overcome that challenge by using a novel technique they developed called momentum-resolved electron energy-loss spectroscopy (M-EELS). M-EELS is more sensitive to valence band excitations than inelastic x-ray or neutron scattering techniques. Kogar retrofit an EEL spectrometer, which on its own could measure only the trajectory of an electron, giving how much energy and momentum it lost, with a goniometer, which allows the team to measure very precisely an electron's momentum in real space.

With their new technique, the group was able for the first time to measure collective excitations of the low-energy bosonic particles, the paired electrons and holes, regardless of their momentum. More specifically, the team achieved the first-ever observation in any material of the precursor to exciton condensation, a soft plasmon phase that emerged as the material approached its critical temperature of 190 Kelvin. This soft plasmon phase is "smoking gun" proof of exciton condensation in a three-dimensional solid and the first-ever definitive evidence for the discovery of excitonium.

"This result is of cosmic significance," affirms Abbamonte. "Ever since the term 'excitonium' was coined in the 1960s by Harvard theoretical physicist Bert Halperin, physicists have sought to demonstrate its existence. Theorists have debated whether it would be an insulator, a perfect conductor, or a superfluid - with some convincing arguments on all sides. Since the 1970s, many experimentalists have published evidence of the existence of excitonium, but their findings weren't definitive proof and could equally have been explained by a conventional structural phase transition."

Rak recalls the moment, working in the Abbamonte laboratory, when she first understood the magnitude of these findings: "I remember Anshul being very excited about the results of our first measurements on TiSe2. We were standing at a whiteboard in the lab as he explained to me that we had just measured something that no one had seen before: a soft plasmon."

"The excitement generated by this discovery remained with us throughout the entire project," she continues. "The work we did on TiSe2 allowed me to see the unique promise our M-EELS technique holds for advancing our knowledge of the physical properties of materials and has motivated my continued research on TiSe2."

Kogar admits, discovering excitonium was not the original motivation for the research - the team had set out to test their new M-EELS method on a crystal that was readily available - grown at Illinois by former graduate student Young Il Joe, now of NIST. But he emphasizes, not coincidentally, excitonium was a major interest:

"This discovery was serendipitous. But Peter and I had had a conversation about 5 or 6 years ago addressing exactly this topic of the soft electronic mode, though in a different context, the Wigner crystal instability. So although we didn't immediately get at why it was occurring in TiSe2, we did know that it was an important result - and one that had been brewing in our minds for a few years."

The team's findings are published in the December 8, 2017 issue of the journal Science in the article, "Signatures of exciton condensation in a transition metal dichalcogenide."

This fundamental research holds great promise for unlocking further quantum mechanical mysteries: after all, the study of macroscopic quantum phenomena is what has shaped our understanding of quantum mechanics. It could also shed light on the metal-insulator transition in band solids, in which exciton condensation is believed to play a part. Beyond that, possible technological applications of excitonium are purely speculative.

TECH SPACE
Blackbody radiation from a warm object attracts polarizable objects
Berkeley CA (SPX) Dec 14, 2017
Our physical attraction to hot bodies is real, according to UC Berkeley physicists. To be clear, they're not talking about sexual attraction to a "hot" human body. But the researchers have shown that a glowing object actually attracts atoms, contrary to what most people - physicists included - would guess. The tiny effect is much like the effect a laser has on an atom in a device called op ... read more

Related Links
University of Illinois College of Engineering
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Bristol scientists turn beer into fuel

NREL develops novel method to produce renewable acrylonitrile

Algae could feed and fuel planet with aid of new high-tech tool

NREL research finds a sweet spot for engineering better cellulose-degrading enzymes

TECH SPACE
Aerospace's SeedTECH AI advances to second round of $5M IBM Watson XPRIZE

Speedy cockroaches help researchers train robots to walk

Not Your Grandpa's Robot: Russian Robot 'FEDOR' May Become Self-Learning

'Grinch bots' may steal Christmas by snatching up prized toys

TECH SPACE
Construction to start on $160 million Kennedy Energy Park in North Queensland

Oil-rich Alberta sees momentum for wind energy

U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

TECH SPACE
Denmark sets milestone for EV charges

US prosecutors confirm Uber target of criminal probe

Singapore launches electric car-sharing service

Chinese auto giant to end petrol vehicle sales by 2025

TECH SPACE
New test procedure for developing quick-charging lithium-ion batteries

Scientists create stretchable battery made entirely out of fabric

Nuclear fusion project faces delay over US budget cuts: director

Army researchers seek better batteries

TECH SPACE
Defects found at China nuclear reactor project

Mainz physicists propose a new method for monitoring nuclear waste

Australian waste treatment technology plays major role in management of radioactive waste

Bruce Power Contracts Major Industry Suppliers for Steam Generator Replacement Project

TECH SPACE
US void hard to miss at Paris climate summit

To save climate, stop investing in fossil fuels: economists

Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

TECH SPACE
African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril

Forests are the key to fresh water









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.