Solar Energy News  
CHIP TECH
Physicists solve decades-old scientific mystery of negative differential resistance
by Staff Writers
Edmonton, Canada (SPX) Jan 10, 2017


Robert Wolkow, University of Alberta physics professor and the Principal Research Officer at Canada's National Institute for Nanotechnology. Image courtesy John Ulan for the University of Alberta. For a larger version of this image please go here.

With a storied history that includes more than a half-century of research, a Nobel Prize, and multiple attempts at practical applications, the story of negative differential resistance - or NDR - reads like a scientific mystery, a mystery that University of Alberta physicists have at last succeeded in unraveling.

What does this mean? An opportunity to combine the knowledge with existing technology to create faster, cheaper, and smaller electronic devices, a boon to the continued boom of the digital era.

NDR is an odd effect. We can imagine it by thinking of water being pushed through a hose. The greater the pressure, the faster the flow. Electrons in a wire act similarly, except voltage is applied instead of pressure to induce flow. With water, increased pressure equals increased flow, but in special circumstances with electricity, there is sometimes a backwards and counterintuitive effect where flow slows: this is negative differential resistance.

The first attempt at a practical application for NDR, the Esaki Diode, named for inventor Japanese physicist Leo Esaki, was received in the 1950s with great excitement, some even proclaiming it to be more important than the transistor. The work was awarded a Nobel Prize. Soon after it became clear that mass production was too difficult, the once-heralded device was relegated to niche applications.

Replicating the NDR effect in a way that could be widely deployed remained an enticing goal. Alternatives to the Esaki Diode were found, but those too resisted mass production. The advent of scanning tunneling microscopes in the '80s and the access they provide to nanoscale material properties led to tantalizing NDR signatures from atom-scale structural irregularities in silicon. Excitement was re-kindled, but adequate understanding and manufacturability remained elusive.

Fast forward to the present, and a team of physicists led by Robert Wolkow from the University of Alberta have now discovered the precise atomic structure that gives rise to NDR.

Furthermore, by accounting for the particular rules quantum mechanics enforces for electron flow through a single atom, Wolkow's colleague, theoretical physicist Joseph Maciejko, has succeeded in accounting for the at-first perplexing reduction in current with increasing voltage. These results point the way to practical and lucrative applications in everyday electronics such as phones and computers.

"It turns out that if you can easily see how to neatly and cheaply incorporate this NDR effect into existing electronic transistors, you can make smaller, faster, cheaper devices," says Wolkow. "The value of a hybrid transistor/NDR circuit has been known for decades, but no one has been able to do it efficiently or cheaply enough to make it worthwhile.

"Over the years, people have published papers on variants of the same atom-scale effect. Unfortunately, the riddle of the structure and its properties was never solved. But we now know exactly why it happens, we know exactly what constituents need to be there for it to be controlled.

"We have defined the exact atomic structure that gives rise to NDR, and luckily it is easy to make. As well, we have finally elucidated the mechanism at play-or should I say at work."

Wolkow explains that there's now a very realistic potential to combine this NDR phenomenon with everyday electronics in a practical, affordable way, an advance potentially worth billions for the technology industry.

Research paper: "Negative Resistance with a Single Atom" was published December 30 in Physical Review Letters.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Alberta
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Random access memory on a low energy diet
Dresden, Germany (SPX) Jan 04, 2017
Memory chips are among the most basic components in computers. The random access memory is where processors temporarily store their data, which is a crucial function. Researchers from Dresden and Basel have now managed to lay the foundation for a new memory chip concept. It has the potential to use considerably less energy than the chips produced to date - this is important not only for mobile a ... read more


CHIP TECH
Economics of forest biomass raise hurdles for rural development

Biomass operations aren't currently feasible in rural communities

Molecular Velcro boosts microalgae's potential in biofuel, industrial applications

Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae

CHIP TECH
Fractional calculus helps control systems hit their mark

For 'intelligent' robot, chess is just a hobby

ELFI: Engine for Likelihood-Free Inference facilitates more effective simulation

China's Huawei adds Amazon Alexa to flagship phone

CHIP TECH
French power group aims to double wind capacity

The answer is blowing in the wind

New rules for micro-grids in Alberta

Offshore wind makes U.S. debut

CHIP TECH
The future of car tech: getting to know you

Renault-Nissan doubles down on autonomous cars

VW near $2 bn US criminal settlement in 'dieselgate': report

Chrysler's new tech-rich concept car aims young

CHIP TECH
Scientists discover a molecular motor has a 'gear' for directional switching

Rolling out an e-sticker revolution

Devices that convert heat into electricity

Bright future for energy devices

CHIP TECH
AREVA NP supplies Safety Instrumentation and Control System for Generation 3 Reactor

Battling energy crisis, Pakistan turns on fourth nuclear plant

Report finds additional radioactive materials in gas-well drill cuttings

Chemistry research breakthrough that could improve nuclear waste recycling technologies

CHIP TECH
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

CHIP TECH
Obama creates two new national monuments

Amazonia's best and worst areas for carbon recovery revealed

Warming could slow upslope migration of trees

Better road planning could boost food production while protect forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.