Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Physicists use ultrafast lasers to create first tabletop X-ray device
by Staff Writers
Boulder CO (SPX) Jun 19, 2012


Laser beams, which are visible light, represent one of the best ways to concentrate energy and have been a huge benefit to society by enabling the Internet, DVD players, laser surgery and a host of other uses.

An international research team led by the University of Colorado Boulder has generated the first laser-like beams of X-rays from a tabletop device, paving the way for major advances in many fields including medicine, biology and nanotechnology development.

For half a century, scientists have been trying to figure out how to build a cost-effective and reasonably sized X-ray laser that could, among other things, provide super-high-resolution imaging, according to Henry Kapteyn, a CU-Boulder physics professor and fellow at JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology.

Such a device also could be used by scientists to peer into a single cell or chemical reaction to gain a better understanding of the nanoworld.

Most of today's X-ray lasers require so much power that they rely on facilities the size of football stadiums or larger, making their use impractical.

To avoid the need for a large energy source to power an X-ray laser, the CU-Boulder researchers have created a tabletop device that uses atoms in a gas to efficiently combine more than 5,000 low-energy mid-infrared laser photons to generate each high-energy X-ray photon, said Margaret Murnane, a CU-Boulder physics professor and JILA fellow who is co-leading the research efforts.

"Because X-ray wavelengths are 1,000 times shorter than visible light and they penetrate materials, these coherent X-ray beams promise revolutionary new capabilities for understanding and controlling how the nanoworld works on its fundamental time and length scales," Murnane said.

"Understanding the nanoworld is needed to design and optimize next-generation electronics, data and energy storage devices and medical diagnostics."

The findings will appear in the journal Science.

The tabletop device - an X-ray tube in the soft X-ray region - produces a bright, directed beam of X-rays by ensuring that all of the atoms in a multi-atmosphere pressure gas emit X-rays, according to Kapteyn.

"As an added advantage, the X-rays emerge as very short bursts of light that can capture the fastest processes in our physical world, including imaging the motions of electrons," Kapteyn said.

Laser beams, which are visible light, represent one of the best ways to concentrate energy and have been a huge benefit to society by enabling the Internet, DVD players, laser surgery and a host of other uses.

"However, the same revolution that happened for visible light sources that made it possible to create laser-like beams of light for widespread use instead of multidirectional light from a light bulb, is only now happening for X-rays," Kapteyn said.

Co-authors on the paper were Tenio Popmintchev, Ming-Chang Chen, Dimitar Popmintchev, Paul Arpin, Susannah Brown, Andreas Becker and Agnieszka Jaron-Becker of CU-Boulder; Skirmantas Alisauskas, Giedrius Andriukaitis, Tadas Balciunas, Oliver Mucke, Audrius Pugzlys and Andrius Baltuska of the Vienna University of Technology in Vienna; Bonggu Shim, Samuel E. Schrauth and Alexander Gaeta of Cornell University; and Carlos Hernandez-Garcia and Luis Plaja of the Universidad de Salamanca in Salamanca, Spain.

.


Related Links
University of Colorado at Boulder
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
All the colors of a high-energy rainbow, in a tightly focused beam
Washington DC (SPX) Jun 19, 2012
For the first time, researchers have produced a coherent, laser-like, directed beam of light that simultaneously streams ultraviolet light, X-rays, and all wavelengths in between. One of the few light sources to successfully produce a coherent beam that includes X-rays, this new technology is the first to do so using a setup that fits on a laboratory table. An international team of researc ... read more


TECH SPACE
New 'OPEC' offers sustainable smell of sweet success

Carbon is Key for Getting Algae to Pump Out More Oil

Brazil ethanol plant at risk after protest

New energy source for future medical implants: sugar

TECH SPACE
Robot 'finger' more sensitive than human's

Robot learns language through 'conversation' with people

Russian to fund personal robots quest

Engineered robot interacts with live fish

TECH SPACE
US wind industry gains major new supporters for Production Tax Credit campaign

Scotland issues rare wind farm denial

South Korea partners for offshore wind

Change in air as Africa's biggest wind farm set for Kenya

TECH SPACE
US probes safety of 1.4 mn Toyotas after fires

BMW, Guggenheim open Berlin design 'lab' after threats

British car output soars 42% in May

Composites could lead to greener cars

TECH SPACE
British, Argentinian leaders clash over Falklands

Bankrupt British refinery facing closure

Why Natural Gas Could Displace Gasoline

Philippine ship pull-out calms tensions: China

TECH SPACE
Lithuania opens probe into nuclear plant bribery claim

Japan PM orders first nuclear restart

EU closes probe into Areva, Siemens civil nuclear deal

RWE pulls plug on international nuclear power business

TECH SPACE
S. Korea to conduct power shortage drill

88.8% Of Electricity In Brazil Is From Renewable Sources

Thousands converge for Rio U.N. talkathon

China to trial energy-saving electricity price scheme

TECH SPACE
Scientists reconstruct pre-Columbian human effects on the Amazon Basin

Palm oil for India 'destroying Indonesian forests'

Expansion of forests in the European Arctic could result in the release of carbon dioxide

Scientists dispel myths, provide new insight into human impact on pre-Columbian Amazon River Basin




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement