Solar Energy News  
TIME AND SPACE
Physics laws cannot always turn back time
by Staff Writers
Amsterdam, The Netherlands (SPX) Mar 24, 2020

Two computer simulations of three black holes that influence each other. The red line is the simulation in which the computer goes back in time. The white line is the simulation where the computer moves forward in time. After 35 million years (situation on the left), there is still no deviation. The red line completely covers the white line. After 37 million years (middle), the orbits deviate slightly and the white line becomes visible. The time symmetry is broken because disturbances the size of the Planck length have an exponential effect. After 40 million years (right), the deviation is obvious. See video here

If three or more objects move around each other, history cannot be reversed. That is the conclusion of an international team of researchers based on computer simulations of three black holes orbiting each other. The researchers, led by the Dutch astronomer Tjarda Boekholt, publish their findings in the April issue of the journal The Monthly Notices of the Royal Astronomical Society.

Most basic laws in physics have no problem with the direction in which they run. They are, as scientists call it, symmetric with respect to time, or time symmetric. In practice, however, everyone knows that time cannot simply be turned back. For example, a cup that falls into hundred pieces really does not fly back into your hand spontaneously and undamaged. Until now, scientists explained the lack of time symmetry by the statistical interaction between large numbers of particles. Three astronomers now show that only three particles are enough to break the time symmetry.

Tjarda Boekholt (University of Coimbra, Portugal), Simon Portegies Zwart (Leiden University, the Netherlands) and Mauri Valtonen (University of Turku, Finland) calculated the orbits of three black holes that influence each other. This is done in two simulations. In the first simulation, the black holes start from rest.

Then they move towards each other and past each other in complicated orbits. Finally one black hole leaves the company of the two others. The second simulation starts with the end situation of two black holes and the escaped third black hole and tries to turn back the time to the initial situation.

It turns out that time cannot be reversed in 5% of the calculations. Even if the computer uses more than a hundred decimal places. The last 5% is therefore not a question of better computers or smarter calculation methods, as previously thought.

The researchers explain the irreversibility using the concept of Planck length [1.6 x 10^-35 m]. This is a principle known in physics that applies to phenomena at the atomic level and smaller. Lead researcher Boekholt: "The movement of the three black holes can be so enormously chaotic that something as small as the Planck length will influence the movements. The disturbances the size of the Planck length have an exponential effect and break the time symmetry."

Co-author Portegies Zwart adds: "So not being able to turn back time is no longer just a statistical argument. It is already hidden in the basic laws of nature. Not a single system of three moving objects, big or small, planets or black holes, can escape the direction of time."

Research Report: "Gargantuan Chaotic Gravitational Three-Body Systems and their Irreversibility to the Planck Length"


Related Links
Netherlands Research School For Astronomy
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Long-distance fiber link poised to create powerful networks of optical clocks
Washington DC (SPX) Mar 18, 2020
An academic-industrial team in Japan has connected three laboratories in a 100-kilometer region with an optical telecommunications fiber network stable enough to remotely interrogate optical atomic clocks. This type of fiber link is poised to expand the use of these extremely precise timekeepers by creating an infrastructure that could be used in a wide range of applications such as communication and navigation systems. "The laser system used for optical clocks is extremely complex and thus not pr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
A novel biofuel system for hydrogen production from biomass

Recovering phosphorus from corn ethanol production can help reduce groundwater pollution

Deceptively simple process could boost plastics recycling

Scientists call for more sustainable palm oil practices

TIME AND SPACE
Help NASA design a robot to dig on the Moon

Thai hospitals deploy 'ninja robots' to aid virus battle

Soft robot, unplugged

Stanford engineers create shape-changing, free-roaming soft robot

TIME AND SPACE
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

TIME AND SPACE
Volvo Cars halts Europe, US production

Uber shares surge after citing signs of rebound from virus slump

Volvo Cars halts Europe, US productio

Tesla resumes work on German plant after court ruling

TIME AND SPACE
Tiny double accelerator recycles energy

Engineers develop supercapacitor to power wearable electronic

A landmark plan for realizing fusion energy and advancing plasma science

Geothermal energy: Unlimited renewable energy for our homes

TIME AND SPACE
Protests as Moscow moves to build road on radioactive dump

Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Atomic fingerprint identifies emission sources of uranium

US military plans portable mini nuclear power plants

TIME AND SPACE
Brussels not dropping Green Deal despite virus

Czech PM urges EU to shelve Green Deal amid virus

The impact of energy development on bird populations

Brexit and Its Impact on Green Energy Projects

TIME AND SPACE
Remote Tierra del Fuego kelp forests surveyed for the first time in 45 years

Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.