Subscribe free to our newsletters via your
. Solar Energy News .




EARTH OBSERVATION
Picturing peanut contamination with near infrared hyperspectral imaging
by Staff Writers
London, UK (SPX) Apr 02, 2015


A fast method for detecting peanut contamination is offered by NIR spectroscopy, an analytical technique that detects specific molecules based on their absorption and reflection of light at near infrared wavelengths.

Study the label of almost any food product and you're likely to see the rather vague warning "May contain peanuts" somewhere on there, unless of course it's a product that definitely does contain peanuts. As now revealed in a paper in the latest issue of JNIRS--Journal of Near Infrared Spectroscopy, these warnings of peanut contamination could soon lose much of their uncertainty, thanks to a novel form of near infrared (NIR) spectroscopy known as NIR hyperspectral imaging (HSI).

Any food product may contain traces of peanut if it is made with powdered foodstuffs like wheat flour that were ground up in a facility that also grinds up peanuts, as it can be impossible to prevent contamination from occurring. Even at trace levels, this contamination can be a major problem for individuals who are allergic to peanuts, potentially triggering a life-threatening reaction.

Rather than offering a vague warning, food manufacturers would much rather know for sure whether a powdered foodstuff contains trace amounts of peanut and at exactly what concentration. Although there are several techniques for detecting peanut contamination, they tend to be time-consuming and only work with small samples, which may not be representative of the foodstuff as a whole.

A faster method for detecting peanut contamination is offered by NIR spectroscopy, an analytical technique that detects specific molecules based on their absorption and reflection of light at near infrared wavelengths. Scientists have already shown that peanut powder generates different NIR spectra to various other powdered foodstuffs, including wheat flour, milk and cocoa, allowing any contamination to be detected.

The problem with conventional NIR spectroscopy is that it collects an average NIR spectrum over a large area, meaning that trace peanut contamination may be missed. So a team of scientists at the LPF-TAGRALIA, Universidad Politecnica de Madrid (UPM) in Spain and the Institute National de Recherche en Sciences et Technologies pour L'environnement et L'agriculture (IRSTEA) in France decided to try to solve this problem using NIR HSI, which produces images in which every pixel contains spectral data.

Each pixel can thus contain information about peanut contamination, making NIR HSI much more sensitive than conventional NIR spectroscopy and allowing it to detect trace levels of peanut over a large area. As a first test, the team of scientists confirmed that peanut powder generates different NIR spectra to wheat flour when analysed by NIR HSI, allowing the two powders to be distinguished from each other.

Next, they developed a scoring system that could determine whether or not specific pixels in an image of wheat flour contained peanut powder from their NIR spectra. Using this scoring system, they could then estimate the level of contamination by simply determining the percentage of pixels that contained peanut powder.

They tested this system on samples of wheat flour spiked with powder from four different types of peanut, including raw, blanched and roasted, at concentrations varying between 0.01% and 10%. The system was able to detect peanut contamination even at 0.01%, although it could only accurately determine the level of contamination at between 0.1% and 10%.

"These results show the feasibility of using HSI systems for detecting traces of peanut and similar products that are present in low percentages in powder foods with contrasting spectra," says lead researcher Puneet Mishra at UPM.

Mishra and his colleagues are now looking to apply the same technique to detecting contamination by other nuts, which can also cause serious allergic reactions. "Although peanut is the most common cause of nut allergy, peanut allergic patients are frequently also sensitive to tree nuts," he explains. "We are presently sampling different tree nut mixtures of almond, walnut and hazelnut to check the feasibility of HSI for detecting them."

P. Mishra, A. Herrero-Langreo, P. Barreiro, J.M. Roger, B. Diezma, N. Gorretta and L. Lleo, "Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis", J. Near Infrared Spectrosc. 23(1), 15-22 (2015).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
IM Publications LLP
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
NASA's New Soil Moisture Mapper Goes for a Spin
Pasadena CA (JPL) Mar 30, 2015
Mission controllers at NASA's Jet Propulsion Laboratory in Pasadena, California, have commanded the 20-foot (6-meter) reflector antenna on NASA's new Soil Moisture Active Passive (SMAP) observatory to begin spinning for the first time. The partial spin-up is a key step in commissioning the satellite in preparation for science operations. Last week, mission controllers sent commands to rele ... read more


EARTH OBSERVATION
Researchers use wastewater to grow algae for biofuels

Do biofuel policies seek to cut emissions by cutting food

Algae from clogged waterways could serve as biofuels and fertilizer

New yeast strain to enhance biofuel and biochemical production

EARTH OBSERVATION
Researchers build brain-machine interface to control prosthetic hand

Artificial hand able to respond sensitively using smart metal wires

Tiny bio-robot is a germ suited-up with graphene quantum dots

Snake robots learn to turn by following the lead of real sidewinders

EARTH OBSERVATION
Cornell deploys dual ZephIR lidars for more accurate turbulence study

U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

EARTH OBSERVATION
Nissan pledges self-driving cars in Japan in 2016

Toyota to build new plants in China, Mexico: media

Tesla reports 'record' quarter for auto sales

Driverless Cars Poised To Transform Automotive Industry

EARTH OBSERVATION
Squeeze to remove heat with elastocaloric materials

New technology converts packing peanuts to battery components

Superconductivity breakthroughs

You can't play checkers with charge ordering

EARTH OBSERVATION
Bulgaria drops $4bn Westinghouse nuclear deal

Atomic Experts to Visit Fukushima in April to Check Contaminated Water

Japan's NRA confirms fault line under nuclear reactor on west coast active

Jordan, Russia ink deal on nuclear reactor plant

EARTH OBSERVATION
Latin America divided between oil and green energy

Residential research poor foundation for sustainable development

New Zealand breaks renewable energy record

Energy company Eneco is heating homes with computer servers

EARTH OBSERVATION
Deforestation is messing with our weather and our food

Mild winters not fueling all pine beetle outbreaks in western US

Drought damage leads to widespread forest death

Good luck and the Chinese reverse global forest loss




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.