Solar Energy News  
WATER WORLD
'Planting water' is possible - against aridity and droughts
by Staff Writers
Berlin, Germany (SPX) Sep 23, 2019

illustration only

The water regime of a landscape commutes more and more between the extremes drought or flooding. The type of vegetation and land use plays an important role in water retention and runoff.

Together with scientists from the UK and the US, researchers from the Leibniz- Institute of Freshwater Ecology and Inland Fisheries (IGB) have developed a mathematical model that can reflect the complex interplays between vegetation, soil and water regimes. They show, for example, that in beech forests water is increasingly cycled between soil and vegetation to increase evaporation to the atmosphere, while grass cover promotes groundwater recharge.

With the developed model EcH2o-iso the researchers can quantify where, how and for how long water is stored and released in the landscape. The model helps to better predict the effects of land-use changes on the water balance under changing climatic conditions.

In drought-prone areas in particular, this knowledge can help to develop land use strategies that increase the landscape's resistance to climate change and protect water resources.

"So far, the type of vegetation has been considered primarily with a view to preventing soil erosion. In view of more frequent extreme weather events such as droughts and floods, however, it is increasingly a question of which plants can be cultivated to control the retention or loss of water in the landscape," says Prof. Doerthe Tetzlaff, head of the study, leader of the research group "Landscape Ecohydrology" at IGB and Professor in Ecohydrology at the Humboldt Universitaet zu Berlin.

Previous forecasting models often capture vegetation as a static element. Thus, the complex interactions between evapotranspiration - the evaporation of water by plants and of soil and water surfaces - and the physiological processes of plants could only be insufficiently understood.

In this study, however, long-term data of direct vegetation measures were also used (e.g. biomass production and transpiration). This improves the reliability of the models and their transferability. In the field, the models were tested with so-called conservative tracers. These are markers that can be used to determine the age and origin of the water. This is a novel approach to assess the effects of climate change on the water balance.

In a region around Lake Stechlin in northern Germany, the researchers validated the model using field studies. They compared land areas with deciduous forest and grass cover. The results of the field study show that grassland use leads to more groundwater recharge and that in beech forests more water is returned to the atmosphere by evapotranspiration.

However, the effects are site-specific and depend on the respective hydroclimate, biogeography and landscape ecology. With the help of the EcH2o-iso model, however, these differences can be taken into account in the future and local as well as large scale forecast models can be created.

Research paper


Related Links
Forschungsverbund Berlin
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Climate signature detected in Earth's rivers
Washington (UPI) Sep 16, 2019
Scientists have found a climate signature in the planet's rivers. Climate dictates many of Earth's geologic and hydrological systems, but scientists have struggled to pinpoint the influence of climate on the formation of rivers. Now, researchers have uncovered evidence suggesting climate controls the elevational profile of rivers across the globe. An elevational profile, or long profile, is formed by tracing a river from its headwaters to its mouth. Most rivers fall steeply from the upla ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Getting plastics, fuels and chemical feedstocks from CO2

Plant research could benefit wastewater treatment, biofuels and antibiotics

Fe metabolic engineering method produces butanetriol sustainably from biomass

Rice reactor turns greenhouse gas into pure liquid fuel

WATER WORLD
At NY Fashion Week, robotic dresses take on a life of their own

Russia terminates robot Fedor after space odyssey

'Sense of urgency', as top tech players seek AI ethical rules

Psychosensory electronic skin technology for future AI and humanoid development

WATER WORLD
Sparks fly as Germany's climate plan hits rural landscapes

Government vows action as German wind industry flags

Angry residents send German wind industry spinning

Colombia's biggest wind power portfolio purchased by AES Colombia

WATER WORLD
US fines Hyundai $47 mn over dirty diesel engines

Trump revokes California's authority to set auto emissions limits

Blame game as wheels come off India's auto sector

California vows to fight Trump administration's plan on emissions

WATER WORLD
First report of superconductivity in a nickel oxide material

Breakthrough enables storage and release of mechanical waves without energy loss

Coating developed by Stanford researchers brings lithium metal battery closer to reality

Physicists' study demonstrates silicon's energy-harvesting power

WATER WORLD
Russia to help Uganda develop nuclear energy

Japan's new environment minister wants to scrap nuclear power

Russia's world-first floating nuclear plant arrives in port

Four candidates running to lead UN nuclear watchdog

WATER WORLD
Vast Iraq power plant to be rebuilt; Plugs into Gulf power grid

Germany planning climate action worth over 100 bn euros

Italy's Enel to reduce C02 emissions 70% by 2030

Macro-energy systems and the science of the energy transition

WATER WORLD
US, Brazil press private sector in Amazon

Tree-planting to offset carbon emissions: no cure-all

Rights group says Bolsonaro gives 'green light' to Amazon illegal loggers

Water or Gold? Eternal question nags Ecuador tribes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.