Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Platinum meets its match in quantum dots from coal
by Staff Writers
Houston TX (SPX) Oct 03, 2014


Rice University scientists combined graphene quantum dots, graphene oxide, nitrogen and boron into a catalyst capable of replacing platinum in fuel cells at a fraction of the cost. Illustration courtesy of the Tour Group/Rice University. For a larger version of this image please go here.

Graphene quantum dots created at Rice University grab onto graphene platelets like barnacles attach themselves to the hull of a boat. But these dots enhance the properties of the mothership, making them better than platinum catalysts for certain reactions within fuel cells.

The Rice lab of chemist James Tour created dots known as GQDs from coal last year and have now combined these nanoscale dots with microscopic sheets of graphene, the one-atom-thick form of carbon, to create a hybrid that could greatly cut the cost of generating energy with fuel cells.

The research is the subject of a new paper in the American Chemical Society journal ACS Nano.

The lab discovered boiling down a solution of GQDs and graphene oxide sheets (exfoliated from common graphite) combined them into self-assembling nanoscale platelets that could then be treated with nitrogen and boron.

The hybrid material combined the advantages of each component: an abundance of edges where chemical reactions take place and excellent conductivity between GQDs provided by the graphene base. The boron and nitrogen collectively add more catalytically active sites to the material than either element would add alone.

"The GQDs add to the system an enormous amount of edge, which permits the chemistry of oxygen reduction, one of the two needed reactions for operation in a fuel cell," Tour said.

"The graphene provides the conductive matrix required. So it's a superb hybridization."

The Tour lab's material outperformed commercial platinum/carbon hybrids commonly found in fuel cells. The material showed an oxygen reduction reaction of about 15 millivolts more in positive onset potential - the start of the reaction - and 70 percent larger current density than platinum-based catalysts.

The materials required to make the flake-like hybrids are much cheaper, too, Tour said. "The efficiency is better than platinum in terms of oxygen reduction, permitting one to sidestep the most prohibitive hurdle in fuel-cell generation - the cost of the precious metal," he said.

Rice graduate student Huilong Fei is the paper's lead author. Co-authors are graduate students Ruquan Ye, Gonglan Ye, Yongji Gong, Zhiwei Peng and Errol Samuel; research technician Xiujun Fan; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of the Department of Materials Science and NanoEngineering, all of Rice.

Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of materials science and nanoengineering and of computer science.

The Office of Naval Research Multidisciplinary University Research Initiative (MURI) program, the Air Force Office of Scientific Research and its MURI program supported the research.

.


Related Links
Rice University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
A piece of work by NUP/UPNA researchers demonstrates various ways for controlling light in the terahertz frequency range
Usurbil, Spain (SPX) Sep 25, 2014
The Journal of Optics has devoted the front page of its special edition on Mid-infrared and THz Photonics to the work produced by the NUP/UPNA-Public University of Navarre researchers Victor Pacheco-Pena, Victor Torres, Miguel Beruete and Miguel Navarro-Cia (former student currently working at Imperial College London), together with Nader Engheta (University of Pennsylvania), one of the world's ... read more


TIME AND SPACE
Bioenergy: Australia's forgotten renewable energy source (so far)

Maverick Synfuels Introduces Maverick Oasis

Plant variants point the way to improved biofuel production

Search for better biofuels microbes leads to the human gut

TIME AND SPACE
Taste-testing robots in Thailand to ensure local restaurants are doing country proud

Football-size underwater robot could protect American ports

Blackout? Robots to the Rescue

New RFID technology helps robots find household objects

TIME AND SPACE
Scottish renewable energy output up 30 percent from 2013

UAE's Masdar joins mega wind project off Britain

RWE Innogy gets new British wind energy running

Moventas to service two turbines in Eesti Energia's Aulepa wind park

TIME AND SPACE
Lamborghini reveals Asterion LPI-910, hybrid supercar that hits 199 mph and gets 57 mpg

High-tech gadgets drive wow factor at Paris motor show

Musk: Next Tesla cars will self-drive 90 percent of the time

EU warns Germany as car coolant row heats up

TIME AND SPACE
Recruiting bacteria to be technology innovation partners

Lego-like modular components make building 3-D 'labs-on-a-chip' a snap

Algorithm allows easy switch out and recharge of electric car batteries

Lithium-sulfur batteries closer to commercial reality with more energy

TIME AND SPACE
Sweden's Social Democrats and Greens agree on nuclear freeze

Bolivia to spend $2 bn on nuclear energy plant: Morales

SAfrica denies corruption in Russia nuclear plant pact

Fukushima operator, Sellafield to compare nuclear notes

TIME AND SPACE
First large-scale carbon capture goes online in Canada

Poland may veto CO2 emission cuts in EU talks

Paraffins to cut energy consumption in homes

South Australia to reap benefits from higher Renewable Energy Target

TIME AND SPACE
Philippines 'breaks world tree-planting record'

Water research tackles growing grassland threat: trees

Major palm oil companies to halt deforestation

Smithsonian Scientists Discover Tropical Tree Microbiome in Panama




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.