Solar Energy News  
TECH SPACE
Polymer films pass electron gun test
by Staff Writers
Moscow, Russia (SPX) Mar 19, 2020

The results show that an increase in phthalide-containing units in co-PAEKs from 3 to 50 percent produced virtually no change in radiation-induced conductivity within the studied electric field range. This indicates that charge carriers in these experiments moved in an isolated manner and that the applied electric fields were below the threshold needed for collective interaction of charges and formation of conductive channels triggering the effect of high-to-low resistivity transition.

HSE researchers, jointly with colleagues from the RAN Institute of Organoelement Compounds and the RAN Institute of Physical Chemistry and Electrochemistry, have studied the properties of a polyarylene ether ketone-based copolymer (co-PAEK) for potential space applications. Co-PAEK films are highly resistant to electrostatic discharges caused by ionizing radiation and can thus be used as protective coating for spacecraft electronics. The study findings have been published in Polymers.

Spacecraft electronics are continuously exposed to the ambient space plasma. Its ionizing radiation causes electric charge to accumulate in dielectric materials on board space-based vehicles, leading to electrostatic discharges which can result in failures of electronic devices and, ultimately, of the spacecraft itself.

Worldwide, just three research centres are equipped and staffed to study the effects of ionizing radiation on materials used in spacecraft construction in virtually real-life conditions. These facilities are the MIEM HSE Laboratory of Space Vehicles and Systems' Functional Safety (Moscow) , John Robert Dennison's Laboratory at Utah State University (Logan, Utah, USA), and Thierry Paulmier's Laboratory in Toulouse, France.

The researchers investigated the conductive properties of co-PAEK films by first supplying film specimens with very thin aluminium electrodes via vacuum deposition and then placing the specimens inside a vacuum chamber equipped with an electron gun.

By bombarding the specimens with charge carriers of 50,000 eV, the researchers measured the film's radiation-induced conductivity associated with electron-hole pairs produced by the radiation.

This parameter reflects how effectively materials can remove accumulated charges. In particular, the researchers examined the current-voltage (I-V) characteristics, i.e., the relationship between the electric current passing through the film and the voltage at the electrodes; they found that due to their super-linear I-V characteristics, the films are highly effective in removing electrostatic charges.

The researchers also studied the films' switching effect, i.e., the polymer's ability to make a reversible transition from a high-ohmic to a low-ohmic state in a strong electric field. This latter state increases the polymer's conductivity.

There is still no generally accepted physical model describing the switching effect in thin polymer films. However, the co-PAEK films' low switching thresholds and the reversibility of these effects appear highly promising. Notably, it is possible to modify the co-polymers' resistivity switching ability by varying its phthalide content.

The authors investigated the transport of charge carriers in co-PAEK films with varied phthalide content; for this purpose, they synthesized 20- to 25-micron films with 3, 5 and 50 percent of phthalide-containing units.

The results show that an increase in phthalide-containing units in co-PAEKs from 3 to 50 percent produced virtually no change in radiation-induced conductivity within the studied electric field range. This indicates that charge carriers in these experiments moved in an isolated manner and that the applied electric fields were below the threshold needed for collective interaction of charges and formation of conductive channels triggering the effect of high-to-low resistivity transition.

Unfortunately, at the studied film thicknesses, further increase in electric fields causes an electric breakdown; therefore, it may be too early to plan for their space application.

Nevertheless, the researchers believe that this material is highly promising and that further research of the switching effect could produce more conclusive results. This copolymer has already been used to protect prototype models of silicone solar cells in spacecraft.

Research paper


Related Links
National Research University Higher School Of Economics
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
European Gateway experiment will monitor radiation in deep space
Paris (ESA) Mar 16, 2020
The first science experiments that will be hosted on the Gateway, the international research outpost orbiting the Moon, have been selected by ESA and NASA. Europe's contribution will monitor radiation to gain a complete understanding of cosmic and solar rays in unexplored areas as the orbital outpost is assembled around the Moon. The first module for the Gateway, the Power and Propulsion Element, is set to launch on the second Artemis mission and will host two external scientific investigations. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Recovering phosphorus from corn ethanol production can help reduce groundwater pollution

Deceptively simple process could boost plastics recycling

A novel biofuel system for hydrogen production from biomass

Scientists call for more sustainable palm oil practices

TECH SPACE
Help NASA design a robot to dig on the Moon

Robots that admit mistakes foster better conversation in humans

High School students vie for a win in robotics competition

Small robots practice scouting skills for future Moon missions

TECH SPACE
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

TECH SPACE
Tesla resumes work on German plant after court ruling

Driver's-ed-inspired system could make automated parallel parking more accessible

Self-driving car trajectory tracking gets closer to human-driver ideal

GM unveils long-range battery in fresh electric car push

TECH SPACE
Feeding fusion: hydrogen ice pellets prove effective for fueling fusion plasmas

Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy

Pathways toward realizing the promise of all-solid-state batteries

Artificial intelligence helps prevent disruptions in fusion devices

TECH SPACE
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Atomic fingerprint identifies emission sources of uranium

US military plans portable mini nuclear power plants

Pentagon seeks designs for portable nuclear reactors

TECH SPACE
The impact of energy development on bird populations

Czech PM urges EU to shelve Green Deal amid virus

Brussels not dropping Green Deal despite virus

Brexit and Its Impact on Green Energy Projects

TECH SPACE
Remote Tierra del Fuego kelp forests surveyed for the first time in 45 years

Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.