Solar Energy News  
Porphyrin Electron-Transfer Reactions Observed At The Molecular Level

As part of their research, Borguet and his collaborator were looking on a metal electrode surface at porphyrins, an important class of molecules that are involved in a number of biological processes, and in fact, can act as a catalyst for these processes.
by Staff Writers
Philadelphia PA (SPX) Aug 08, 2007
Researchers at Temple University have observed and documented electron transfer reactions on an electrode surface at the single molecule level for the first time, a discovery which could have future relevance to areas such as molecular electronics, electrochemistry, biology, catalysis, information storage, and solar energy conversion. The researchers have published their findings, "Dynamics of Porphyrin Electron-Transfer Reactions at the Electrode-Electrolyte Interface at the Molecular Level," in the international scientific journal, Angewandte Chemie.

"The simplest chemical reactions are oxidation and reduction," says Eric Borguet, professor of chemistry at Temple and the study's main author. "Chemistry is basically all about the transfer of electrons from one atom to another or one molecule to another. Those reactions are called 'redox' reactions."

According to Borguet, one important place where these reactions occur is on an electrode surface. For example, metal corrosion is essentially oxidation. Corrosion can sometimes be reversed by reducing the oxides and reclaiming the metal.

"Most of our studies of oxidation and reduction basically involve measuring the flow of electrons in and out of bulk chemical systems," he says. "We've never really looked at this at the single molecule level, looking at it one molecule at a time. And it wasn't necessarily clear that we could do that."

As part of their research, Borguet and his collaborator were looking on a metal electrode surface at porphyrins, an important class of molecules that are involved in a number of biological processes, and in fact, can act as a catalyst for these processes.

The Temple researchers used scanning tunneling microscopy, in which a sharp metal tip scans the electrode surface and measures the passage of electrons from the tip, through the molecules, to the metal surface. They noted that the chemical state of the molecule changes the ability of the electrons to pass from the metal tip to the electrode.

"We noticed that some of these molecules, under certain conditions, appeared dark while others appeared bright," noted Borguet. "What we essentially figured out was that the molecules change color and appear dark when we apply a potential to the electrode that begins to oxidize, or essentially pull out an electron from, the molecule. So now it seems that we can see the difference between oxidized molecules-the dark ones-and reduced molecules-the bright ones."

Borguet says that by gaining a handle on the molecules' chemical state, researchers now have the ability to identify oxidized and reduced molecules, and to track them individually.

"As researchers, we can now ask questions such as 'Do molecules oxidize one at a time or do entire domains or areas on the surface oxidize together?'," he says. "Do they oxidize in pairs or in clusters? If one molecule oxidizes, is it going to make the oxidation of a neighboring molecule more or less likely? What is the timescale under which these processes occur and what factors facilitate redox reactions?"

Borguet believes the Temple researchers are the first to observe and understand this interfacial electron transfer process at the single molecule level.

"We think if you look back in the literature and at other peoples' data there is some evidence for this, but I don't think they actually recognized that they were observing this process," he says.

Related Links
Temple University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Hidden Order Found In A Quantum Spin Liquid
London UK (SPX) Jul 31, 2007
An international team, including scientists from the London Center for Nanotechnology, has detected a hidden magnetic "quantum order" that extends over chains of 100 atoms in a ceramic without classical magnetism. The findings have implications for the design of devices and materials for quantum information processing. In quantum information processing, data is recorded and manipulated as quantum bits or 'qubits', generalizations of the classical '0' and '1' bits which are traditionally represented by the 'on' and 'off' states of conventional switches. It is widely believed that if large-scale quantum computers can be built, they will be able to solve certain problems, such as code breaking, exponentially faster than classical computers.







  • Tourism The Casualty For Radiation Leak City
  • The Iran Nuke Industry Row
  • IAEA Inspects Quake-Hit Nuclear Plant In Japan
  • France-Libya Accord Plans Further Nuclear Cooperation

  • Ceramic Tubes Could Cut Greenhouse Gas Emissions From Power Stations
  • European Heat Waves Double In Length Since 1880
  • Bush Calls Global Climate Summit To Do A Deal
  • Climate Change Threatens Siberian Forests

  • Risk Of Contamination Rises As Global Food System Expands
  • Rivers Recede But Millions Go Hungry In Flooded South Asia
  • Wild Weather Forces Farmers To Adapt
  • Researcher Studies Proteins That Make Rice Flourish

  • Our Earliest Animal Ancestors
  • Coelacanth Fossil Sheds Light On Fin-To-Limb Evolution
  • Rare Example Of Darwinism Seen In Action
  • Waters Off Washington State Only Second Place In World Where Glass Sponge Reefs Found

  • UC Experts Detail New Standard For Cleaner Transportation Fuels
  • Indigenous Cryogenic Stage Tested For Eight Minutes
  • Ecliptic Celebrates A Decade Of Successful RocketCam Launches
  • Launch Gantry At Cape A Bridge To The Future



  • NASA Helps Texas Respond To Most Widespread Flooding In 50 Years
  • Thailand To Launch Environment Satellite In November
  • Mapping Mountains From Space With GOCE
  • ESA Mission Highlighted At Remote Sensing Conference

  • Purdue Milestone A Step Toward Advanced Sensors And Communications
  • Bridges Too Far As Infrastructure Ages Across The Old West
  • Lockheed Martin Completes Key End-To-End Test Of Space Based Infrared System
  • Nanotech Clay Armour Creates Fire Resistant Hard Wearing Latex Emulsion Paints

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement