Subscribe free to our newsletters via your
. Solar Energy News .




FLORA AND FAUNA
Postcards from the Photosynthetic Edge
by Lynn Yarris for LBNL
Berkeley CA (SPX) Jul 11, 2014


Photosytem II utilizes a water-splitting manganese-calcium enzyme that when energized by sunlight catalyzes a four photon-step cycle of oxidation states (S0-to-S3). When S3 absorbs a photon, molecular oxygen (O2) is released and S0 is generated. S4 is a transient state on the way to S0. Image courtesy of SLAC National Accelerator Laboratory. For a larger version of this image please go here.

A crucial piece of the puzzle behind nature's ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable energy has been provided by an international collaboration of scientists led by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory.

Working at SLAC's Linac Coherent Light Source (LCLS), the world's most powerful x-ray laser, the researchers were able to take detailed "snapshots" of the four photon-step cycle for water oxidation in photosystem II, a large protein complex in green plants. Photosystem II is the only known biological system able to harness sunlight for the oxidation of water into molecular oxygen.

"An effective method of solar-based water-splitting is essential for artificial photosynthesis to succeed but developing such a method has proven elusive," says Vittal Yachandra, a chemist with Berkeley Lab's Physical Biosciences Division and one of the leaders of this study.

"Using femtosecond x-ray pulses for the simultaneous collection of both x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) data at room temperature, we have gone around the four-step catalytic cycle of photosynthetic water oxidation in photosystem II.

"This represents a major advance towards the real time characterization of the formation of the oxygen molecule in photosystem II, and has yielded information that should prove useful for designing artificial solar-energy based devices to split water."

Photo-oxidation of water by photosystem II is responsible for most of the oxygen in Earth's atmosphere. At the core of photosystem II is a manganese-calcium (Mn4Ca) metalloenzyme complex that when energized by solar photons catalyzes a four photon-step cycle of oxidation states (S0-to-S3) that ultimately yields molecular oxygen. Scientists need to observe intact x-ray crystallography of the Mn4Ca ion in action but the molecule is highly sensitive to radiation.

The LCLS is the world's only source of x-rays capable of providing femtosecond pulses at the high intensities that allow intact photosystem II crystals to be imaged before they are destroyed by exposure to the x-ray beams.

"In an earlier study at the LCLS, we reported combined XRD and XES data from photosystem II samples in the dark S1 state and the one visible-flash illuminated S2 (1-flash) state," says Junko Yano, a chemist also with Berkeley Lab's Physical Biosciences Division and also a leader of this research.

"In this new study we report data from the S3 (2-flash) and S0 (3-flash) states, which are the intermediate states directly before and after the evolution of the oxygen molecule. In addition, we report data for the first time from a light-induced transient state between the S3 and S0 states, which opens the window for elucidating the mechanism of oxygen-oxygen bond formation that occurs between these two states."

XRD data of all the flash states studied revealed an anomalous diffraction signal from Mn that is not complicated by signals from the overall protein matrix of carbon, nitrogen, oxygen and other metals, or even by the Ca atom, which is a part of the five atom Mn4Ca metalloenzyme complex.

"The detection of this anomalous Mn scattering signal not only validates the quality of our data, but also the procedures used for analyzing the data," says computational scientist Nicholas Sauter. Sauter and Paul Adams, both with Berkeley Lab's Physical Biosciences Division and both contributors to this study, are leading an effort to develop new and better methods for analyzing data from the LCLS.

Yachandra and Yano believe that the detection of an anomalous Mn scattering signal opens up the possibility for detecting changes pertaining only to the Mn cluster as it advances through the S-state cycles and the oxygen-oxygen bond formation, which is where the catalytic action is taking place.

"Knowing how this happens is important for understanding the design principles used in natural photosynthesis," Yachandra says.

Results of this study have been published in Nature Communications. The paper is titled "Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy." Yachandra, Yano and Uwe Bergmann, a physicist with SLAC, are the corresponding authors.

The lead author is Jan Kern, a chemist with joint appointments at Berkeley Lab and SLAC. In addition to Berkeley Lab and SLAC, the international collaboration also included scientists from Umea University in Sweden, Humboldt University in Germany, and the ESRF in France. (See additional information for a link to the paper, and a full list of co-authors and funding support.)

.


Related Links
Lawrence Berkeley National Laboratory (Berkeley Lab)
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Discovery Provides Insights on How Plants Respond to Elevated CO2 Levels
La Jolla CA (SPX) Jul 08, 2014
Biologists at UC San Diego have solved a long-standing mystery concerning the way plants reduce the numbers of their breathing pores in response to rising carbon dioxide levels in the atmosphere. In a paper published in this week's early online edition of Nature, they report the discovery of a new genetic pathway in plants, made up of four genes from three different gene families that cont ... read more


FLORA AND FAUNA
Microbe sniffer could point the way to next-gen bio-refining

The JBEI GT Collection: A New Resource for Advanced Biofuels Research

A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

FLORA AND FAUNA
Collisions with Robots - without Risk of Injury

Power consumption of robot joints could be 40 percent less

How do ants get around? Ultra-sensitive machines measure their every step...

Collaborative learning -- for robots

FLORA AND FAUNA
EON and GE Partner To Build Texas Wind Farm

U.S., German companies to operate Texas Panhandle wind farm

Great progress on wind installations, Germany's RWE says

OX2 acquires Polish wind power company, Greenfield Wind

FLORA AND FAUNA
Colorado State University to receive four really smart cars this summer

Volkswagen to build two new plants in China

Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

FLORA AND FAUNA
Britain wins carbon capture funding from EU

Insights from nature for more efficient water splitting

Hollow-fiber membranes could cut separation costs, energy use

Study helps unlock mystery of high-temp superconductors

FLORA AND FAUNA
Japan city launches legal bid to halt reactor build

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

Improved method for isotope enrichment would better secure supplies

FLORA AND FAUNA
Upton wants policies in place to exploit energy leadership

Blow for Australia government as carbon tax repeal fails

Green planning needed to maintain city buildings

GE taps China CEO to lead Alstom merger

FLORA AND FAUNA
Amazon logging and fires release 54m tons of carbon a year

Maine officials say white pine fungus spreading

Incentives as effective as penalties for slowing Amazon deforestation

New study shows Indonesia's disastrous deforestation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.