Subscribe free to our newsletters via your
. Solar Energy News .




MARSDAILY
Potential Signs of Ancient Life in Mars Rover Photos
by Johnny Bontemps for Astrobiology Magazine
Moffett Field CA (SPX) Jan 08, 2015


Overlay of sketch on photograph from above to assist in the identification of the structures on the rock bed surface. Image credit: Noffke (2015). Image courtesy of ASTROBIOLOGY, published by Mary Ann Liebert, Inc. For a larger version of this image please go here.

A careful study of images taken by the NASA rover Curiosity has revealed intriguing similarities between ancient sedimentary rocks on Mars and structures shaped by microbes on Earth. The findings suggest, but do not prove, that life may have existed earlier on the Red Planet.

The photos were taken as Curiosity drove through the Gillespie Lake outcrop in Yellowknife Bay, a dry lakebed that underwent seasonal flooding billions of years ago. Mars and Earth shared a similar early history. The Red Planet was a much warmer and wetter world back then.

On Earth, carpet-like colonies of microbes trap and rearrange sediments in shallow bodies of water such as lakes and costal areas, forming distinctive features that fossilize over time. These structures, known as microbially-induced sedimentary structures (or MISS), are found in shallow water settings all over the world and in ancient rocks spanning Earth's history.

Nora Noffke, a geobiologist at Old Dominion University in Virginia, has spent the past 20 years studying these microbial structures. Last year, she reported the discovery of MISS that are 3.48 billion years old in the Western Australia's Dresser Formation, making them potentially the oldest signs of life on Earth.

In a paper published online last month in the journal Astrobiology (the print version comes out this week), Noffke details the striking morphological similarities between Martian sedimentary structures in the Gillespie Lake outcrop (which is at most 3.7 billion years old) and microbial structures on Earth.

The distinctive shapes include erosional remnants, pockets, domes, roll-ups, pits, chips and cracks, which on Earth can extend from a few centimeters to many kilometers.

Although Noffke makes a tantalizing case for possible signs of ancient life on Mars, her report is not a definitive proof that these structures were shaped by biology. Getting such confirmation would involve returning rock samples to Earth and conducting additional microscopic analyses, a mission that isn't scheduled anytime in the near future.

"All I can say is, here's my hypothesis and here's all the evidence that I have," Noffke says, "although I do think that this evidence is a lot."

"The fact that she pointed out these structures is a great contribution to the field," says Penelope Boston, a geomicrobiologist at the New Mexico Institute of Mining and Technology. "Along with the recent reports of methane and organics on Mars, her findings add an intriguing piece to the puzzle of a possible history for life on our neighboring planet."

A Careful Analysis
"I've seen many papers that say 'Look, here's a pile of dirt on Mars, and here's a pile of dirt on Earth,'" says Chris McKay, a planetary scientist at NASA's Ames Research Center and an associate editor of the journal Astrobiology. "And because they look the same, the same mechanism must have made each pile on the two planets.'"

McKay adds: "That's an easy argument to make, and it's typically not very convincing. However, Noffke's paper is the most carefully done analysis of the sort that I've seen, which is why it's the first of its kind published in Astrobiology."

The images on which Noffke drew are publicly available on the Mars Science Laboratory page on NASA's website.

"In one image, I saw something that looked very familiar," Noffke recalls. "So I took a closer look, meaning I spent several weeks investigating certain images centimeter by centimeter, drawing sketches, and comparing them to data from terrestrial structures. And I've worked on these for 20 years, so I knew what to look for."

Noffke compared the rover pictures to images taken at several sites on Earth, including modern sediment surfaces in Mellum Island, Germany; Portsmouth Island, USA; and Carbla Point, Western Australia; as well as older fossils of microbial mats in Bahar Alouane, Tunisia; the Pongola Supergroup in Africa; and the Dresser Formation in Western Australia.

The photos showed striking morphological similarities between the terrestrial and Martian sedimentary structures.

The distribution patterns of the microbial structures on Earth vary depending on where they are found. Different types of structures are found together in different types of environments. For instance, microbial mats that grow in rivers will create a different set of associations than those that grow in seasonally flooded environments.

The patterns found in the Gillespie Lake outcrop are consistent with the microbial structures found in similar environments on Earth.

What's more, the terrestrial structures change in a specific way over time. As the microbial mats form, grow, dry up, crack and re-grow, specific structures become associated with them. Here again, Noffke found that the distribution pattern in Martian rocks correspond with microbial structures on Earth that have changed over time. Taken together, these clues strengthen her argument beyond simply pointing out the similarities in shape.

In her paper, she also describes alternative processes through which these could have formed. For instance, the chips, pits and cracks could be the product of erosion by salt, water, or wind.

"But if the Martian structures aren't of biological origin," Noffke says, "then the similarities in morphology, but also in distribution patterns with regards to MISS on Earth would be an extraordinary coincidence."

"At this point, all I'd like to do is point out these similarities," she adds. "Further evidence must be provided to verify this hypothesis."

Confirmation Pending
At the end of her report, Noffke outlines a detailed strategy for confirming the potential biological nature of the Martian structures. Unfortunately, one important step - returning samples to Earth for further analyses - is just not feasible yet.

Noffke also lists a series of measurements Curiosity could potentially do to strengthen the case if it came across such structures again, including looking for organic or chemical signatures using its Sample Analysis at Mars (SAM) instrument.

But McKay says this likely would not work. "In principle, that instrument could tell us something about the nature of these materials biologically, if there were still large amounts of biological organics in the samples," he explains. "But these are just ancient sedimentary structures, and biology has long since left."

"What's more, in practice this instrument is restricted," he adds. "There was a contamination spill in the instrument presumably during landing. So it has a very high background contamination level."

On Earth, scientists typically confirm the biological nature of microbial sediment structures by searching for specific microscopic textures, which involves cutting rocks into thin slices and studying them under a microscope.

On Mars, this would be very difficult do from an engineering perspective, although McKay doesn't rule out the possibility for future missions. "I don't know if it can be done, but engineers are pretty smart," he says. "If you give them a challenge, they usually find a solution."

He adds: "A sample return mission would be the gold standard. But that's just unlikely to happen anytime soon."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Mars News and Information at MarsDaily.com
Lunar Dreams and more






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MARSDAILY
Meteorite From Mars Contains Alien Biomass
Moscow, Russia (Sputnik) Dec 04, 2014
Chinese scientists discovered that a meteorite of Martian origin that hit Earth in Morocco in summer 2011, contains signs of water and organic carbon combinations, which may be evidence of extraterrestrial life dating 700,000 years back in time. Meteorite 'Tissint' landed in the midst of Moroccan desert of Guelmim-Es Semara on 18 July, 2011, roughly 700,000 years after it was chopped off t ... read more


MARSDAILY
EPA wants cleaner wood-burning fires, new rules expected by February

Plant genetic advance could lead to more efficient conversion of plant biomass to biofuels

Guelph Researchers Recipe: Cook Farm Waste into Energy

Conversion process turns biomass 'waste' into lucrative chemical products

MARSDAILY
NASA Robot Plunges Into Volcano to Explore Fissure

I, Tormentum

QinetiQ North America refurbishing, modernizing Talon robots used by the military

Pitt team publishes new findings from mind-controlled robot arm project

MARSDAILY
ConEd Development acquires wind farm on South Dakota ranch

295 MW German wind farm ready to go

Panama makes climate splash with wind energy

China snaps up UK wind farms

MARSDAILY
Do sports cars have a future in a driverless world?

Toyota to give away fuel-cell patents to boost industry

Has car manufacturer taken the corner too fast with the boxfish design?

Car of the future emerges at Las Vegas electronics show

MARSDAILY
Aquion Energy to build microgrid battery system in Hawaii

Green walls, effective acoustic insulation

Nanowire could keep people warm

Chinese power companies pursue smart grids

MARSDAILY
APS signs Westinghouse fuel contract

Russia Slams Kiev for Switching to US Supplies of Nuclear Fuel

Russia's Nuclear Development in 2014

Indian NPP's first unit begins commercial operation

MARSDAILY
Energy companies investing in one another

House vows to deliver on energy promises

How Climate Change Could Leave Cities in the Dark

NYC owners should tap energy and economic benefits of cogeneration

MARSDAILY
NASA Finds Good News on Forests and Carbon Dioxide

European fire ant impacts forest ecosystems by helping alien plants spread

Muddy forests, shorter winters present challenges for loggers

Ecuador returning German money in environment row




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.