Solar Energy News  
SPACE SCOPES
Powerful Telescopes Combine to Push Frontier on Galaxy Clusters
by Staff Writers
Charlottesville VA (SPX) Mar 15, 2016


These two galaxy clusters are part of the "Frontier Fields" project that obtains long observations with multiple telescopes.

Galaxy clusters are enormous collections of hundreds or even thousands of galaxies and vast reservoirs of hot gas embedded in massive clouds of dark matter, invisible material that does not emit or absorb light but can be detected through its gravitational effects. These cosmic giants are not merely novelties of size or girth - rather they represent pathways to understanding how our entire universe evolved in the past and where it may be heading in the future.

To learn more about clusters, including how they grow via collisions, astronomers have used some of the world's most powerful telescopes, looking at different types of light. They have focused long observations with these telescopes on a half-dozen galaxy clusters. The name for this galaxy cluster project is the "Frontier Fields."

Two of these Frontier Fields galaxy clusters, MACS J0416.1-2403 (abbreviated MACS J0416) and MACS J0717.5+3745 (MACS J0717 for short) are featured here in a pair of multi-wavelength images.

Located about 4.3 billion light years from Earth, MACS J0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster. MACS J0717, one of the most complex and distorted galaxy clusters known, is the site of a collision between four clusters. It is located about 5.4 billion light years away from Earth.

These new images of MACS J0416 and MACS J0717 contain data from three different telescopes: NASA's Chandra X-ray Observatory (diffuse emission in blue), Hubble Space Telescope (red, green, and blue), and the National Science Foundation's Karl G. Jansky Very Large Array (VLA) (diffuse emission in pink). Where the X-ray and radio emission overlap, the image appears purple. Astronomers also used data from the Giant Metrewave Radio Telescope in India to study the properties of MACS J0416.

The Chandra data shows gas in the merging clusters with temperatures of millions of degrees. The optical data shows galaxies in the clusters and other, more distant, galaxies lying behind the clusters. Some of these background galaxies are highly distorted because of gravitational lensing, the bending of light by massive objects.

This effect can also magnify the light from these objects, enabling astronomers to study background galaxies that would otherwise be too faint to detect. Finally, the structures in the radio data trace enormous shock waves and turbulence. The shocks are similar to sonic booms, generated by the mergers of the clusters.

New results from multi-wavelength studies of MACS J0416 and MACS J0717, described in two separate papers, are included below.

ACS J0416
An open question for astronomers about MACS J0416 has been: are we seeing a collision in these clusters that is about to happen or one that has already taken place? Until recently, scientists have been unable to distinguish between these two explanations. Now, the combined data from these telescopes is providing new answers.

In MACS J0416 the dark matter (which leaves its gravitational imprint in the optical data) and the hot gas (detected by Chandra) line up well with each other. This suggests that the clusters have been caught before colliding. If the clusters were being observed after colliding, the dark matter and hot gas should separate from each other, as seen in the famous colliding cluster system known as the Bullet Cluster.

The cluster in the upper left contains a compact core of hot gas, most easily seen in a specially processed image, and also shows evidence of a nearby cavity, or hole, in the X-ray emitting gas. The presence of these structures also suggests that a major collision has not occurred recently; otherwise these features would likely have been disrupted. Finally, the lack of sharp structures in the radio image provides more evidence that a collision has not yet occurred.

In the cluster located in the lower right, the observers have noted a sharp change in density on the southern edge of the cluster. This change in density is most likely caused by a collision between this cluster and a less massive structure located further to the lower right.

MACS J0717
In Very Large Array images of this cluster, seven gravitationally-lensed sources are observed, all point sources or sources that are barely larger than points. This makes MACS J0717 the cluster with the highest number of known lensed radio sources. Two of these lensed sources are also detected in the Chandra image. The researchers are only aware of two other lensed X-ray sources behind a galaxy cluster.

All of the lensed radio sources are galaxies located between 7.8 and 10.4 billion light years from Earth. The brightness of the galaxies at radio wavelengths shows that they contain stars forming at high rates. Without the amplification by lensing, some of these radio sources would be too faint to detect with typical radio observations.

The two lensed X-ray sources detected in the Chandra images are likely active galactic nuclei (AGN) at the centers of galaxies. AGN are compact, luminous objects powered by gas heated to millions of degrees as it falls toward supermassive black holes. These two X-ray sources would have been detected without lensing but would have been two or three times fainter.

The large arcs of radio emission in MACS J0717 are very different from those in MACS J0416 because of shock waves arising from the multiple collisions occurring in the former object. The X-ray emission in MACS J0717 has more clumps because there are four clusters violently colliding.

Georgiana Ogrean, who was at Harvard-Smithsonian Center for Astrophysics while leading the research on MACS J0416, is currently at Stanford University. The paper describing these results was published in the October 20th, 2015, issue of the Astrophysical Journal and is available online. The research on MACS J0717 was led by Reinout van Weeren from the Harvard-Smithsonian Center for Astrophysics, and was published in the February 1st, 2016, issue of the Astrophysical Journal and is available online.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Radio Astronomy Observatory
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE SCOPES
Webb space telescope secondary mirror installed
Greenbelt MD (SPX) Mar 13, 2016
The sole secondary mirror that will fly aboard NASA's James Webb Space Telescope was installed onto the telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland, on March 3, 2016. The Webb telescope uses many mirrors to direct incoming light into the telescope's instruments. The secondary mirror is called the secondary mirror because it is the second surface the light from the cosm ... read more


SPACE SCOPES
Stanford scientists make renewable plastic from carbon dioxide and plants

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Fuel or food? Study sees increasing competition for land, water resources

SPACE SCOPES
Coming to a hotel near you: the robot humanoid receptionist

In emergencies, should you trust a robot

Watch Google's AlphaGo computer take on world's best Go player

Engineered swarmbots rely on peers for survival

SPACE SCOPES
Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

SPACE SCOPES
China minister warns on subsidies as Uber, Didi battle

GM buys self-driving technology startup Cruise

VW says wrongfooted by US going public on emissions

China car sales edge down in Feb: industry group

SPACE SCOPES
Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

Plasma processing technique takes SNS accelerator to new energy highs

100 million-degree fluid essential to fusion

SPACE SCOPES
Argentina could be involved in building Bolivian nuclear research center

AREVA JV to undertake Sellafield decommissioning work

Japan utility appeals court order to shut reactors

Low turnout at anti-nuclear rally as Taiwan pins hope on new leader

SPACE SCOPES
Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

SPACE SCOPES
CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

US joins Honduran probe of environmentalist's murder









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.