Solar Energy News  
INTERNET SPACE
Powerful new photodetector can enable optoelectronics advances
by Staff Writers
Madison WI (SPX) Jul 10, 2017


UW-Madison electrical and computer engineering graduate student Zhenyang Xia holds a dish containing photodetector samples. The sample colors vary depending on how they are tuned to absorb a specific light wavelength. Photo: Stephanie Precourt/UW-Madison Photo: Stephanie Precourt/UW-Madison

In today's increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk.

Smaller also is better for optoelectronic devices - like camera sensors or solar cells - which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.

However, two major challenges have stood in the way: First, shrinking the size of conventionally used "amorphous" thin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they become almost transparent and actually lose some ability to gather or absorb light.

Now, in a nanoscale photodetector that combines a unique fabrication method and light-trapping structures, a team of engineers from the University of Wisconsin-Madison and the University at Buffalo has overcome both of those obstacles.

The researchers - electrical engineering professors Zhenqiang (Jack) Ma and Zongfu Yu at UW-Madison and Qiaoqiang Gan at UB - described their device, a single-crystalline germanium nano-membrane photodetector on a nano-cavity substrate, in the journal Science Advances.

"The idea, basically, is you want to use a very thin material to realize the same function of devices in which you need to use a very thick material," says Ma.

The device consists of nano-cavities sandwiched between a top layer of ultrathin single-crystal germanium and a reflecting layer of silver.

"Because of the nano-cavities, the photons are 'recycled' so light absorption is substantially increased - even in very thin layers of material," says Ma.

Nano-cavities are made up of an orderly series of tiny, interconnected molecules that essentially reflect, or circulate, light. Gan already has shown that his nano-cavity structures increase the amount of light that thin semiconducting materials like germanium can absorb.

However, most germanium thin films begin as germanium in its amorphous form - meaning the material's atomic arrangement lacks the regular, repeating order of a crystal. That also means its quality isn't sufficient for increasingly smaller optoelectronics applications.

That's where Ma's expertise comes into play. A world expert in semiconductor nano-membrane devices, Ma used a revolutionary membrane-transfer technology that allows him to easily integrate single crystalline semiconducting materials onto a substrate.

The result is a very thin, yet very effective, light-absorbing photodetector - a building block for the future of optoelectronics.

"It is an enabling technology that allows you to look at a wide variety of optoelectronics that can go to even smaller footprints, smaller sizes," says Yu, who conducted computational analysis of the detectors.

While the researchers demonstrated their advance using a germanium semiconductor, they also can apply their method to other semiconductors.

"And importantly, by tuning the nano-cavity, we can control what wavelength we actually absorb," says Gan. "This will open the way to develop lots of different optoelectronic devices."

INTERNET SPACE
Tencent's plans to list its answer to Kindle Store in Hong Kong
Hong Kong (AFP) July 4, 2017
Chinese internet giant Tencent is to list China Literature, the country's biggest online publishing business, in Hong Kong with a report saying it could raise as much as half-a-billion dollars. In documents filed in the financial hub on Tuesday, Tencent will hold at least 50 percent of the firm - similar to Amazon's Kindle Store - and remain its parent after the spin-off. It currently hold ... read more

Related Links
University of Wisconsin-Madison
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Solving a sweet problem for renewable biofuels and chemicals

Cheap, energy-efficient and clean reaction to make chemical feedstock

Biofuel from waste

Regulating the indirect land use carbon emissions imposes high hidden costs on fuel

INTERNET SPACE
AI Will Prepare Robots for the Unknown

Snake robot could help maintain space station, explore moon

Developing New Approaches to Celestial Threats Using AI

Numenta demonstrates machine intelligence algorithm for real-time anomaly detection

INTERNET SPACE
Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

INTERNET SPACE
Baidu CEO's self-driving car stunt stumps police: media

China starts regulating bike-sharing as complaints soar

China police probe funding of 'traffic-straddling' bus

Electric vehicles inefficient way to reduce CO2 emissions: study

INTERNET SPACE
CAS researchers develop selective electrocatalysts to boost direct methanol fuel cell performance

New material may help cut battery costs for electric cars, cellphones

Temperature sensor could power more energy-efficient wearable devices

Ruthenium rules for new fuel cells

INTERNET SPACE
Sixth MOX nuclear shipment leaves France for Japan

UK nuclear plant to cost consumers billions more

Toshiba delays results again citing US nuclear unit

AREVA obtains transport license for its new cask in France and Belgium

INTERNET SPACE
Fighting global warming and climate change requires a broad energy portfolio

Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

New ultrathin material for splitting water could make hydrogen production cheaper

INTERNET SPACE
UNESCO urges Poland to stop logging ancient forest

Green activists, rangers face off over Poland's ancient forest

Slow-growing ponderosas survive mountain pine beetle outbreaks

US imposes second round of tariffs on Canadian lumber









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.