Solar Energy News  
STELLAR CHEMISTRY
Pressure runs high at edge of solar system
by Mara Johnson-Groh for GSFC News
Greenbelt MD (SPX) Oct 09, 2019

The Voyager spacecraft, one in the heliosheath and the other just beyond in interstellar space, took measurements as a solar even known as a global merged interaction region passed by each spacecraft four months apart. These measurements allowed scientists to calculate the total pressure in the heliosheath, as well as the speed of sound in the region.

Out at the boundary of our solar system, pressure runs high. This pressure, the force plasma, magnetic fields and particles like ions, cosmic rays and electrons exert on one another when they flow and collide, was recently measured by scientists in totality for the first time - and it was found to be greater than expected.

Using observations of galactic cosmic rays - a type of highly energetic particle - from NASA's Voyager spacecraft scientists calculated the total pressure from particles in the outer region of the solar system, known as the heliosheath. At nearly 9 billion miles away, this region is hard to study. But the unique positioning of the Voyager spacecraft and the opportune timing of a solar event made measurements of the heliosheath possible. And the results are helping scientists understand how the Sun interacts with its surroundings.

"In adding up the pieces known from previous studies, we found our new value is still larger than what's been measured so far," said Jamie Rankin, lead author on the new study and astronomer at Princeton University in New Jersey. "It says that there are some other parts to the pressure that aren't being considered right now that could contribute."

On Earth we have air pressure, created by air molecules drawn down by gravity. In space there's also a pressure created by particles like ions and electrons. These particles, heated and accelerated by the Sun create a giant balloon known as the heliosphere extending millions of miles out past Pluto. The edge of this region, where the Sun's influence is overcome by the pressures of particles from other stars and interstellar space, is where the Sun's magnetic influence ends. (Its gravitational influence extends much farther, so the solar system itself extends farther, as well.)

In order to measure the pressure in the heliosheath, the scientists used the Voyager spacecraft, which have been travelling steadily out of the solar system since 1977. At the time of the observations, Voyager 1 was already outside of the heliosphere in interstellar space, while Voyager 2 still remained in the heliosheath.

"There was really unique timing for this event because we saw it right after Voyager 1 crossed into the local interstellar space," Rankin said. "And while this is the first event that Voyager saw, there are more in the data that we can continue to look at to see how things in the heliosheath and interstellar space are changing over time."

The scientists used an event known as a global merged interaction region, which is caused by activity on the Sun. The Sun periodically flares up and releases enormous bursts of particles, like in coronal mass ejections. As a series of these events travel out into space, they can merge into a giant front, creating a wave of plasma pushed by magnetic fields.

When one such wave reached the heliosheath in 2012, it was spotted by Voyager 2. The wave caused the number of galactic cosmic rays to temporarily decrease. Four months later, the scientists saw a similar decrease in observations from Voyager 1, just across the solar system's boundary in interstellar space.

Knowing the distance between the spacecraft allowed them to calculate the pressure in the heliosheath as well as the speed of sound. In the heliosheath sound travels at around 300 kilometers per second - a thousand times faster than it moves through air.

The scientists noted that the change in galactic cosmic rays wasn't exactly identical at both spacecraft. At Voyager 2 inside the heliosheath, the number of cosmic rays decreased in all directions around the spacecraft. But at Voyager 1, outside the solar system, only the galactic cosmic rays that were traveling perpendicular to the magnetic field in the region decreased. This asymmetry suggests that something happens as the wave transmits across the solar system's boundary.

"Trying to understand why the change in the cosmic rays is different inside and outside of the heliosheath remains an open question," Rankin said.

Studying the pressure and sound speeds in this region at the boundary of the solar system can help scientists understand how the Sun influences interstellar space. This not only informs us about our own solar system, but also about the dynamics around other stars and planetary systems.

+ NASA's IBEX Mission


Related Links
Voyager at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Scientists observe year-long plateaus in decline of type Ia supernova light curves
Belfast UK (SPX) Oct 08, 2019
This is a surprising finding as astronomers had expected that the light curve would not only continue decreasing but even experience a sharp drop, rather than flattening into a plateau. The discovery is a huge step forward for astronomers as they use the brightness of these kind of supernovae to measure the rate of expansion of the universe. The project began when scientists at the Center for Astrophysics | Harvard and Smithsonian (CfA) in the US first noticed strange light curve behaviors w ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Finding microbial pillars of the bioenergy community

Getting plastics, fuels and chemical feedstocks from CO2

Plant research could benefit wastewater treatment, biofuels and antibiotics

Fe metabolic engineering method produces butanetriol sustainably from biomass

STELLAR CHEMISTRY
Army bio-inspired theoretical research may make robots more effective on the future battlefield

Controlling robots across oceans and space

Vietnamese roll out Transformers-inspired robot with green message

NASA designing shapeshifting robots for Saturn's moons

STELLAR CHEMISTRY
Norway's Equinor, British SSE chosen for world's biggest offshore wind farm

Sparks fly as Germany's climate plan hits rural landscapes

Government vows action as German wind industry flags

Angry residents send German wind industry spinning

STELLAR CHEMISTRY
Crisis-hit Nissan names China unit head Makoto Uchida as new CEO

Volkswagen faces first mammoth diesel lawsuit on home turf

Volkswagen faces first mammoth diesel lawsuit on home turf

Revamped Uber app adds transit options, passenger safety features

STELLAR CHEMISTRY
Pressure may be key to thermoelectric generators

How to Harmonise Wildlife and Energy Manufacturing - A Case Study

Air Force scientists discover unique stretchable conductor

Solving the longstanding mystery of how friction leads to static electricity

STELLAR CHEMISTRY
Bill for long-delayed French nuclear plant rises to 12.4 bn euros

Japan power firm executives quit over $3 million gift scandal

GE Hitachi Nuclear Energy announces new reactor technology collaboration in Estonia

France says nuclear plant overruns 'unacceptable'

STELLAR CHEMISTRY
Canada, if Trudeau wins, to hit net zero emissions by 2050: minister

Sixty-six countries vow carbon neutrality by 2050: UN

Italy's Enel to reduce C02 emissions 70% by 2030

Germany planning climate action worth over 100 bn euros

STELLAR CHEMISTRY
Our Amazon: Brazilians who live in the world's biggest rainforest

Life of misery for Brazil's Amazon pioneers

Brazil highways drive Amazon development -- and destruction

India's top court halts tree felling after protests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.