Subscribe free to our newsletters via your
. Solar Energy News .




EARTH OBSERVATION
Promising New Technique for Probing Earth's Deep Interior
by Staff Writers
Washington DC (SPX) Feb 26, 2013


The long-range spin-spin interaction (blue wavy lines) in which the spin-sensitive detector on Earths surface interacts with geoelectrons (red dots) deep in Earths mantle. The arrows on the geoelectrons indicate their spin orientations, opposite that of Earths magnetic field lines (white arcs). Illustration: Marc Airhart (University of Texas at Austin) and Steve Jacobsen (Northwestern University). Credit: Marc Airhart, University of Texas at Austin, and Steve Jacobsen, Northwestern University.

researchers at Amherst College in Massachusetts and the University of Texas at Austin have described a new technique based in particle physics that might one day reveal, in more detail than ever before, the composition and characteristics of the deep Earth.

There's just one catch: the technique relies on a fifth force of nature that has not yet been detected, but some particle physicists think it might exist. The fifth force would be in addition to gravity, the weak and strong nuclear forces and electromagnetism.

Physicists call this fifth force a long-range spin-spin interaction. As theorized, the fifth force would rely on the building blocks of atoms (electrons, protons and neutrons), separated over vast distances, to "feel" each other's presence.

If it does exist, this exotic new force would connect matter at Earth's surface with matter hundreds or even thousands of miles deep within Earth's mantle and could potentially provide new information about the composition and characteristics of deep Earth, which is poorly understood because of its inaccessibility.

"The most rewarding and surprising thing about this project was realizing that particle physics could actually be used to study the deep Earth," says Jung-Fu "Afu" Lin, associate professor at the University of Texas at Austin's Jackson School of Geosciences and co-author of the study appearing this week in the journal Science.

The research was supported by NSF's Geoscience and Mathematical and Physical Science Directorates, the U.S. Department of Energy (DOE), and the Carnegie/DOE Alliance Center.

This new force could help settle a scientific quandary. When earth scientists previously have tried to model how factors such as iron concentration and physical and chemical properties of matter vary with depth - for example, using the way earthquake rumbles travel through the Earth or through laboratory experiments designed to mimic the intense temperatures and pressures of the deep Earth - they get different answers.

The fifth force, assuming it exists, might help reconcile these conflicting lines of evidence.

Earth's mantle is a thick geological layer sandwiched between the thin outer crust and central core, made up mostly of iron-bearing minerals. The atoms in these minerals and the subatomic particles making up the atoms have a property called spin.

Spin can be thought of as an arrow that points in a particular direction. It is thought that Earth's magnetic field causes some of the electrons in these mantle minerals to become slightly spin-polarized, meaning the directions in which they spin are no longer completely random, but have some preferred orientation. These electrons have been dubbed "geoelectrons."

The goal of this project was to see whether the scientists could use the proposed long-range spin-spin interaction to detect the presence of these distant geoelectrons.

The researchers, led by Larry Hunter, professor of physics at Amherst College, first created a computer model of Earth's interior to map the expected densities and spin directions of geoelectrons.

The model was based in part on insights gained from Lin's laboratory experiments, which measure electron spins in minerals at the high temperatures and pressures of Earth's interior. This map gave the researchers clues about the strength and orientations of interactions they might expect to detect in their laboratory in Amherst, Mass.

Second, the researchers used a specially designed apparatus to search for interactions between geoelectrons deep in the mantle and subatomic particles at Earth's surface. The team's experiments essentially explored whether the spins of electrons, neutrons or protons in various laboratories might have a different energy, depending on the direction with respect to the Earth that they were pointing.

"We know, for example, that a magnet has a lower energy when it is oriented parallel to the geomagnetic field and it lines up with this particular direction - that is how a compass works," Hunter says.

"Our experiments removed this magnetic interaction and looked to see if there might be some other interaction with our experimental spins. One interpretation of this 'other' interaction is that it could be a long-range interaction between the spins in our apparatus and the electron spins within the Earth, that have been aligned by the geomagnetic field. This is the long-range spin-spin interaction we were looking for."

Although the apparatus was not able to detect any such interactions, the researchers could at least infer that such interactions, if they exist, must be incredibly weak - no more than a millionth of the strength of the gravitational attraction between the particles. That's useful information as scientists now look for ways to build ever more sensitive instruments to search for the elusive fifth force.

"No one had previously thought about the possible interactions that might occur between the Earth's spin-polarized electrons and precision laboratory spin-measurements," says Hunter.

If the long-range spin-spin interactions are discovered in future experiments, "geoscientists can eventually use such information to reliably understand the geochemistry and geophysics of the planet's interior," says Lin.

.


Related Links
National Science Foundation
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARTH OBSERVATION
New approach alters malaria maps
University Park PA (SPX) Feb 26, 2013
Identifying areas of malarial infection risk depends more on daily temperature variation than on the average monthly temperatures, according to a team of researchers, who believe that their results may also apply to environmentally temperature-dependent organisms other than the malaria parasite. "Temperature is a key driver of several of the essential mosquito and parasite life history tra ... read more


EARTH OBSERVATION
The impact of algae parasite on algae biofuel output

Engineering cells for more efficient biofuel production

Avoiding virus dangers in 'domesticating' wild plants for biofuel use

U.S. grasslands losing to biofuel crops

EARTH OBSERVATION
Lessons from cockroaches could inform robotics

Simplified brain lets the iCub robot learn language

Brain prostheses create a sense of touch

The quest for a better bionic hand

EARTH OBSERVATION
Rethinking wind power

Global wind energy capacity grows 19 percent in 2012

Finding the right space for offshore wind turbines

Spotting the invisible cracks in wind turbines

EARTH OBSERVATION
Mobile apps reshape urban taxi landscape

Estonia plugs electric cars as power prices soar

China's Geely to set up research centre in Sweden

Bridgestone reports soaring annual profit

EARTH OBSERVATION
BP accused of greed, lax safety at US oil spill trial

Choosing the Right Oil Company to Own in 2013

Chinese oil giant CNOOC buys Canada's Nexen

Sinopec buys $1bn US shale stake from Chesapeake

EARTH OBSERVATION
Technical hitch closes Slovenian nuclear plant

Taiwan mulls nuke plant referendum

Finland's Fennovoima may downsize reactor plans

Trust our nuclear technology: French president to India

EARTH OBSERVATION
Nation Could Double Energy Productivity

China energy consumption rises 3.9% in 2012

Beijing's Pollution Alarms Neighbors

Quantum cryptography put to work for electric grid security

EARTH OBSERVATION
Turkmenistan to plant 3 million trees to make desert bloom

Decoys could blunt spread of ash-killing beetles

Wetland trees a significant overlooked source of methane

Lungs of the planet reveal their true sensitivity to global warming




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement