Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Promising new alloy for resistive switching memory
by Staff Writers
Washington DC (SPX) Sep 25, 2013


(A) This is an illustration of the RRAM array with each memory cell comprising of one filament (sandwiched between two electrodes). In comparison to the surrounding insulator matrix, a number of nano-filaments are formed within the bulk oxide. (B) This is a basic element of a RRAM cell. Control of the electrical field leads to different resistance states. (C) Localized formation of conductive filaments in a TiO2 thin film is shown. The left shows the conductivity map recorded by CAFM. The right shows the same current mapping in 3D. Credit: Yuanmin Du/National U.Singapore.

Memory based on electrically-induced "resistive switching" effects have generated a great deal of interest among engineers searching for faster and smaller devices because resistive switching would allow for a higher memory density.

Researchers have tested a number of oxide materials for their promise in resistive switching memories, and now a team of researchers in Singapore have demonstrated how conductive nano-filaments in amorphous titanium dioxide (TiO2) thin films could be utilized for resistive switching device applications.

Yuanmin Du, Andrew Thye Shen Wee and researchers from the National University of Singapore and the Agency for Science, Technology and Research (A*STAR) of Singapore, describe their results in the journal AIP Advances, which is produced by AIP Publishing.

How Resistive Switching Works
The basic idea of a resistive switching device is that an oxide, which normally acts as an insulator, can be transformed into a conductor, creating a nanoscale filament by using a sufficiently high voltage.

With a RRAM (Resistive Random-Access Memory) device comprising of a single filament, two distinct resistance states ("1" and "0") can be obtained through a simple process of filament rupture and re-formation.

The conductivity of the oxide thin films can be adjusted by changing the deposition conditions. "During the measurements of the as-deposited amorphous TiO2 based resistive switching devices, it was found that the oxide thin films initially have good conductivity.

This implies that a high electrical breakdown initialization process is not required, as reported in many other switching devices using highly insulating oxide thin films," says Du. "The Conductive Atomic Force Microscopy (CAFM) experiments further confirmed that it is possible to form conductive filaments in oxide thin films through a localized transition by an electrical field."

This research team applied both CAFM and KPFM (Kelvin Probe Force Microscopy), a unique approach that allowed the explanation of the observed resistive switching phenomena. Instead of treating filamentary and interfacial effects separately as done previously, both effects were integrated into one filament-interface model, which could help guide the design of RRAM based devices.

The evidence of high density and uniformly distributed nano-filaments implies that high-density memory cells could be made using such oxide thin films. Such materials are promising for future applications. The small dimension of the formed filament provides great advantages over current technology, as Du explains. "In addition to TiO2, we believe that many other oxides could also have the similar properties."

The article "The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy" by Yuanmin Du, Amit Kumar, Hui Pan, Kaiyang Zeng, Shijie Wang, Ping Yang and Andrew Thye Shen Wee appears in the journal AIP Advances.

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences.

.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Graphene Photodetector Integrated into Computer Chip
Vienna, Austria (SPX) Sep 24, 2013
The novel material graphene and its technological applications are studied at the Vienna University of Technology. Now scientists have succeeded in combining graphene light detectors with semiconductor chips. Today, most information is transmitted by light - for example in optical fibres. Computer chips, however, work electronically. Somewhere between the optical data highway and the elect ... read more


CHIP TECH
First look at complete sorghum genome may usher in new uses for food and fuel

First steps towards achieving better and cheaper biodiesel

Want wine with those biofuels? Why not, researchers ask

Duckweed as a cost-competitive raw material for biofuel

CHIP TECH
Robots take over

A swarm on every desktop: Robotics experts learn from public

European researchers envision wearable exoskeleton for factory workers

Ultra-fast trading robots can send markets out of control

CHIP TECH
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

CHIP TECH
Australia researchers unveil 'attention-powered' car

New steering tech for heavy equipment saves fuel, ups efficiency

AllCell's Self-Cooling 48V Micro-Hybrid Battery Solves Hot Parking Lot Problem

California's low-carbon fuel standard to stay

CHIP TECH
China wins $2 billion oil deal in Uganda

Fusion, anyone?

Greenpeace's 'Arctic 30': a diverse group of activists

Lawmaker charged over British fracking site protest

CHIP TECH
Anti-radiation fence at Fukushima has hole: TEPCO

Fukushima operator seeks reactor restart

Iran to take control of Russian-built reactor 'Monday'

Iran assumes control of Bushehr nuclear plant

CHIP TECH
Myanmar's energy sector boosted by World Bank investment

ASEAN region has potential for 70 percent green energy

Clean energy least costly to power America's electricity needs

Gemalto, others join to expand S. America smart metering

CHIP TECH
Uphill for the trees of the world

Tropical forests 'fix' themselves

Calcium key to restoring acid rain-damaged forests

Virginia Tech scientists show why traumatized trees don't 'bleed' to death




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement