Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Quantum computing moves forward
by Staff Writers
Princeton NJ (SPX) Mar 13, 2013


Quantum-based technologies exploit the physical rules that govern very small particles - such as atoms and electrons - rather than the classical physics evident in everyday life. New technologies based on "spintronics" rather than electron charge, as is currently used, would be much more powerful than current technologies.

New technologies that exploit quantum behavior for computing and other applications are closer than ever to being realized due to recent advances, according to a review article published this week in the journal Science.

These advances could enable the creation of immensely powerful computers as well as other applications, such as highly sensitive detectors capable of probing biological systems.

"We are really excited about the possibilities of new semiconductor materials and new experimental systems that have become available in the last decade," said Jason Petta, one of the authors of the report and an associate professor of physics at Princeton University.

Petta co-authored the article with David Awschalom of the University of Chicago, Lee Basset of the University of California-Santa Barbara, Andrew Dzurak of the University of New South Wales and Evelyn Hu of Harvard University.

Two significant breakthroughs are enabling this forward progress, Petta said in an interview. The first is the ability to control quantum units of information, known as quantum bits, at room temperature.

Until recently, temperatures near absolute zero were required, but new diamond-based materials allow spin qubits to be operated on a table top, at room temperature. Diamond-based sensors could be used to image single molecules, as demonstrated earlier this year by Awschalom and researchers at Stanford University and IBM Research (Science, 2013).

The second big development is the ability to control these quantum bits, or qubits, for several seconds before they lapse into classical behavior, a feat achieved by Dzurak's team (Nature, 2010) as well as Princeton researchers led by Stephen Lyon, professor of electrical engineering (Nature Materials, 2012).

The development of highly pure forms of silicon, the same material used in today's classical computers, has enabled researchers to control a quantum mechanical property known as "spin". At Princeton, Lyon and his team demonstrated the control of spin in billions of electrons, a state known as coherence, for several seconds by using highly pure silicon-28.

Quantum-based technologies exploit the physical rules that govern very small particles - such as atoms and electrons - rather than the classical physics evident in everyday life. New technologies based on "spintronics" rather than electron charge, as is currently used, would be much more powerful than current technologies.

In quantum-based systems, the direction of the spin (either up or down) serves as the basic unit of information, which is analogous to the 0 or 1 bit in a classical computing system. Unlike our classical world, an electron spin can assume both a 0 and 1 at the same time, a feat called entanglement, which greatly enhances the ability to do computations.

A remaining challenge is to find ways to transmit quantum information over long distances. Petta is exploring how to do this with collaborator Andrew Houck, associate professor of electrical engineering at Princeton. Last fall in the journal Nature, the team published a study demonstrating the coupling of a spin qubit to a particle of light, known as a photon, which acts as a shuttle for the quantum information.

Yet another remaining hurdle is to scale up the number of qubits from a handful to hundreds, according to the researchers. Single quantum bits have been made using a variety of materials, including electronic and nuclear spins, as well as superconductors.

Some of the most exciting applications are in new sensing and imaging technologies rather than in computing, said Petta. "Most people agree that building a real quantum computer that can factor large numbers is still a long ways out," he said. "However, there has been a change in the way we think about quantum mechanics - now we are thinking about quantum-enabled technologies, such as using a spin qubit as a sensitive magnetic field detector to probe biological systems."

Awschalom, David D., Bassett, Lee C. Dzurak, Andrew S., Hu, Evelyn L., and Petta, Jason R. 2013. Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors. Science. Vol. 339 no. 6124 pp. 1174-1179. DOI: 10.1126/science.1231364 The research at Princeton University was supported by the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation, US Army Research Office grant W911NF-08-1-0189, DARPA QuEST award HR0011-09-1-0007 and the US National Science Foundation through the Princeton Center for Complex Materials (DMR-0819860) and CAREER award DMR-0846341.

.


Related Links
by Catherine Zandonella, Office of the Dean for Research, Princeton
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Creating indestructible self-healing circuits
Pasadena CA (SPX) Mar 12, 2013
Imagine that the chips in your smart phone or computer could repair and defend themselves on the fly, recovering in microseconds from problems ranging from less-than-ideal battery power to total transistor failure. It might sound like the stuff of science fiction, but a team of engineers at the California Institute of Technology (Caltech), for the first time ever, has developed just such self-he ... read more


CHIP TECH
Biobatteries catch breath

Biodiesel algae: Starvation diets damage health

Using photosynthesis to make chemical compounds

Duckweed as a cost-competitive raw material for biofuel production

CHIP TECH
Videoconference robot Beam walks the walk at SXSW

An Internet for robots

Germany eyes new Internet industrial revolution

Brown unveils novel wireless brain sensor

CHIP TECH
Court ruling halts British wind farm

Wind power as a cost-effective long-term hedge against natural gas prices

British National Trust opposes wind farms

Prysmian Gets New Contract For Connection Of Offshore Wind Park

CHIP TECH
Japan auto giants to give workers a bonus boost

China auto sales rise in Jan-Feb: industry group

Electric cars back into the shadows at Geneva car show

Sometimes, the rubber meets the road when you don't want it to

CHIP TECH
Japan extracts 'fire ice' gas from seabed

China plans to survey disputed islands: state media

Oil prices slip as China concerns eclipse US optimism

Russia muscles in on East Med gas boom

CHIP TECH
Nuclear group Areva insists public trusts sector

Budget cuts could hamper nuclear cleanup

Anti-nuclear rally in Tokyo ahead of tsunami anniversary

AREVA produces the first fuel assemblies for the Chinese EPR reactors

CHIP TECH
The household carbon emission per capita in Northwestern China is only 2.05 tons CO2 per year

Court battle looms over Chile power plant

California Ranked First in the US for Green Jobs Last Year

Opportunities And Obstacles Fulfilling California's Nation-Leading Energy Policies

CHIP TECH
Are tropical forests resilient to global warming?

Protected areas prevent deforestation in Amazon rainforest

Nations boost efforts to curb illegal logging

Demand for China chopsticks killing trees: lawmaker




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement