Solar Energy News  
CHIP TECH
Quantum dots enhance light-to-current conversion in layered semiconductors
by Staff Writers
Upton NY (SPX) Apr 15, 2016


Single nanocrystal spectroscopy identifies the interaction between zero-dimensional CdSe/ZnS nano crystals (quantum dots) and two-dimensional layered tin disulfide as a non-radiative energy transfer, whose strength increases with increasing number of tin disulfide layers. Such hybrid materials could be used in optoelectronic devices such as photovoltaic solar cells, light sensors, and LEDs. Image courtesy Brookhaven National Laboratory. For a larger version of this image please go here.

Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features.

In two just-published papers, scientists from the U.S. Department of Energy's Brookhaven National Laboratory, Stony Brook University, and the University of Nebraska describe one such approach that combines the excellent light-harvesting properties of quantum dots with the tunable electrical conductivity of a layered tin disulfide semiconductor.

The hybrid material exhibited enhanced light-harvesting properties through the absorption of light by the quantum dots and their energy transfer to tin disulfide, both in laboratory tests and when incorporated into electronic devices. The research paves the way for using these materials in optoelectronic applications such as energy-harvesting photovoltaics, light sensors, and light emitting diodes (LEDs).

According to Mircea Cotlet, the physical chemist who led this work at Brookhaven Lab's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility, "Two-dimensional metal dichalcogenides like tin disulfide have some promising properties for solar energy conversion and photodetector applications, including a high surface-to-volume aspect ratio.

"But no semiconducting material has it all. These materials are very thin and they are poor light absorbers. So we were trying to mix them with other nanomaterials like light-absorbing quantum dots to improve their performance through energy transfer."

One paper, just published in the journal ACS Nano, describes a fundamental study of the hybrid quantum dot/tin disulfide material by itself. The work analyzes how light excites the quantum dots (made of a cadmium selenide core surrounded by a zinc sulfide shell), which then transfer the absorbed energy to layers of nearby tin disulfide.

"We have come up with an interesting approach to discriminate energy transfer from charge transfer, two common types of interactions promoted by light in such hybrids," said Prahlad Routh, a graduate student from Stony Brook University working with Cotlet and co-first author of the ACS Nano paper.

"We do this using single nanocrystal spectroscopy to look at how individual quantum dots blink when interacting with sheet-like tin disulfide. This straightforward method can assess whether components in such semiconducting hybrids interact either by energy or by charge transfer."

The researchers found that the rate for non-radiative energy transfer from individual quantum dots to tin disulfide increases with an increasing number of tin disulfide layers. But performance in laboratory tests isn't enough to prove the merits of potential new materials. So the scientists incorporated the hybrid material into an electronic device, a photo-field-effect-transistor, a type of photon detector commonly used for light sensing applications.

As described in a paper published online March 24 in Applied Physics Letters, the hybrid material dramatically enhanced the performance of the photo-field-effect transistors-resulting in a photocurrent response (conversion of light to electric current) that was 500 percent better than transistors made with the tin disulfide material alone.

"This kind of energy transfer is a key process that enables photosynthesis in nature," said Chang-Yong Nam, a materials scientist at Center for Functional Nanomaterials and co-corresponding author of the APL paper.

"Researchers have been trying to emulate this principle in light-harvesting electrical devices, but it has been difficult particularly for new material systems such as the tin disulfide we studied. Our device demonstrates the performance benefits realized by using both energy transfer processes and new low-dimensional materials."

Cotlet concludes, "The idea of 'doping' two-dimensional layered materials with quantum dots to enhance their light absorbing properties shows promise for designing better solar cells and photodetectors."

Former Brookhaven Lab staff members Huidong Zang, Huang Yuan, Eli Sutter, and Peter Sutter, and Jia-Shiang Wang, a Stony Brook University graduate student with working with Cotlet, also contributed to this work. The research was funded by the DOE Office of Science. APL paper: "Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity"; ACS Nano paper: "Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brookhaven National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Advance may make quantum computing more practical
Boston MA (SPX) Apr 13, 2016
Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. They exploit a property called superposition, which describes a quantum particle's counterintuitive ability to, in some sense, inhabit more than one physical state at the same time. But superposition is fragile, and finding ways to preserve it is one of ... read more


CHIP TECH
Enzyme leads scientists further down path to pumping oil from plants

Penn chemists lay groundwork for countless new, cleaner uses of methane

Dung, offal make clean gas at Costa Rica slaughterhouse

ORNL invents tougher plastic with 50 percent renewable content

CHIP TECH
Humanoid robotics and computer avatars could help treat social disorders

Scientists invent robotic 'artist' that spray paints giant murals

Touching a robot can elicit physiological arousal in humans

Private equity firm acquires iRobot defense business

CHIP TECH
Maryland praised for renewable energy efforts

Scotland generated most of its electricity in 2015 through renewables

RWE making bold moves in Scottish renewables

Wind energy growing, IEA report finds

CHIP TECH
VW says top executives ready to accept 'sharp cuts' in bonuses

China auto sales up nearly 9% in March: industry group

VW managers in hot seat over bonus payments

Tesla recalls 2,700 Model X SUVs for seat problem

CHIP TECH
PPPL scientists help test innovative device to improve efficiency of tokamaks

Oxygen key to containing coal ash contamination

Battery components can take the heat

Creation of Jupiter interior, a step towards room temp superconductivity

CHIP TECH
US charges China state power company over nuclear conspiracy

Four of Japan's NPP operators seeking to reach deal on safety cooperation

Luxembourg offers cash to help close ageing French nuke plant

French nuclear plant could become electric car factory

CHIP TECH
Economic development does mean a greater carbon footprint

Study shows best way to reduce energy consumption

US tech giants file brief in favor of Obama 'clean power' plan

Four killed at anti-China power plant protest in Bangladesh

CHIP TECH
Protesters demand justice over death of Honduran activist

Greenpeace protests Polish logging of Europe's last primeval forest

International network to spy on trees

US experimental forests chosen for US-China climate initiative









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.