Solar Energy News  
CHIP TECH
Quantum light sources pave the way for optical circuits
by Staff Writers
Munich, Germany (SPX) Aug 05, 2019

By bombarding thin molybdenum sulfide layers with helium ions, physicists at the Technical University of Munich (TUM) succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies.

An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission.

Previous circuits on chips rely on electrons as the information carriers. In the future, photons which transmit information at the speed of light will be able to take on this task in optical circuits. Quantum light sources, which are then connected with quantum fiber optic cables and detectors are needed as basic building blocks for such new chips.

An international team headed up by TUM physicists Alexander Holleitner and Jonathan Finley has now succeeded in creating such quantum light sources in atomically thin material layers and placing them with nanometer accuracy.

First step towards optical quantum computers
"This constitutes a first key step towards optical quantum computers," says Julian Klein, lead author of the study. "Because for future applications the light sources must be coupled with photon circuits, waveguides for example, in order to make light-based quantum calculations possible."

The critical point here is the exact and precisely controllable placement of the light sources. It is possible to create quantum light sources in conventional three-dimensional materials such as diamond or silicon, but they cannot be precisely placed in these materials.

Deterministic defects
The physicists then used a layer of the semiconductor molybdenum disulfide (MoS2) as the starting material, just three atoms thick. They irradiated this with a helium ion beam which they focused on a surface area of less than one nanometer.

In order to generate optically active defects, the desired quantum light sources, molybdenum or sulfur atoms are precisely hammered out of the layer. The imperfections are traps for so-called excitons, electron-hole pairs, which then emit the desired photons.

Technically, the new helium ion microscope at the Walter Schottky Institute's Center for Nanotechnology and Nanomaterials, which can be used to irradiate such material with an unparalleled lateral resolution, was of central importance for this.

On the road to new light sources
Together with theorists at TUM, the Max Planck Society, and the University of Bremen, the team developed a model which also describes the energy states observed at the imperfections in theory.

In the future, the researchers also want to create more complex light source patterns, in lateral two-dimensional lattice structures for example, in order to thus also research multi-exciton phenomena or exotic material properties.

This is the experimental gateway to a world which has long only been described in theory within the context of the so-called Bose-Hubbard model which seeks to account for complex processes in solids.

Quantum sensors, transistors and secure encryption
And there may be progress not only in theory, but also with regard to possible technological developments. Since the light sources always have the same underlying defect in the material, they are theoretically indistinguishable. This allows for applications which are based on the quantum-mechanical principle of entanglement.

"It is possible to integrate our quantum light sources very elegantly into photon circuits," says Klein. "Owing to the high sensitivity, for example, it is possible to build quantum sensors for smartphones and develop extremely secure encryption technologies for data transmission."

Research Report: "Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation"


Related Links
Technical University of Munich (TUM)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Researchers produce electricity by flowing water over extremely thin layers of metal
Chicago IL (SPX) Aug 05, 2019
Scientists from Northwestern University and Caltech have produced electricity by simply flowing water over extremely thin layers of inexpensive metals, including iron, that have oxidized. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production. The films have a conducting metal nanolayer (10 to 20 nanometers thick) that is insulated with an oxide layer (2 nanometers thick). Current is generated when pulses of rainwa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Supercomputing improves biomass fuel conversion

Novel catalysis approach reduces carbon dioxide to methane

Researchers develop technology to harness energy from mixing of freshwater and seawater

Solar energy becomes biofuel without solar cells

CHIP TECH
Roach-inspired robot nearly as fast as real thing, unsquashable

A computer that understands how you feel

In the shoes of a robot: The future approaches

Kitchen disruption: better food through artificial intelligence

CHIP TECH
Kenya launches Africa's biggest wind farm

Stanford study shows how to improve production at wind farms

Windmill protesters placed on Dutch terror list

Can sound protect eagles from wind turbine collisions?

CHIP TECH
Lyft suspends e-bikes after battery fires

Five things to know about VW's 'dieselgate' scandal

Rat brain offers insights to engineers designing self-navigating cars, robots

Automakers reach emissions deal with California, in rebuff to Trump

CHIP TECH
Physicists make graphene discovery that could help develop superconductors

Advance in understanding of all-solid-state batteries

Experiments explore the mysteries of 'magic' angle superconductors

Demonstration of alpha particle confinement capability in helical fusion plasmas

CHIP TECH
UN nuclear watchdog to have new chief in place by January

US renews waivers for Iran civil nuclear projects

Framatome deploys new tool for innovative inspection of baffle bolts in reactor vessels

EU court warns Belgium over nuclear stations

CHIP TECH
Global warming = more energy use = more warming

Big energy discussion 'scrubbed from record' at UN climate talks

New York to get one of world's most ambitious carbon reduction plans

Wartsila and Summit sign Bangladesh's biggest ever service agreement to maintain Summit's 464 MW power plants

CHIP TECH
Bolsonaro vows to fight 'illegal deforestation' in Brazil

Going green: Ethiopia's bid to plant four billion trees

OU-led study shows improved estimates of Brazilian Amazon gains and losses

Brazil police probe tribal leader's killing, village invasion









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.