Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Quantum of sonics: Bonded, not stirred
by Staff Writers
Montreal, Canada (SPX) Jul 31, 2013


Ultrasound induces short-lived bubbles (known as cavitation) that create, for a fraction of a microsecond, when they collapse, 'hotspots' of thousands of degrees. Because this bubble formation is a random and infrequent process, scientists have struggled with ways to harness this incredibly powerful phenomenon for assembling materials rather than for destroying them.

Researchers at McGill University have discovered a new way to join materials together using ultrasound. Ultrasound - sound so high it cannot be heard - is normally used to smash particles apart in water.

In a recent study, the team of researchers, led by McGill professor Jake Barralet, from the faculties of Dentistry and Medicine, found that if particles were coated with phosphate, they could instead bond together into strong agglomerates, about the size of grains of sand. Their results are published in the journal Advanced Materials.

Nanoparticles are extremely useful but are difficult to contain because they are invisible and are easily carried in the air. They can also enter the body easily, creating a concern for the safety of industrial workers and the public. A new method to stick nanoparticles to one another into something you can handle safely with your fingers, without changing their useful properties, could have implications for a range of everyday applications.

"Using ultrasound is a very gentle low-energy process compared to traditional furnaces and welding, so even active drugs and enzymes can easily be built into carriers to make new hybrid materials," says Prof. Barralet, lead investigator of the study and Director of Research in the Department of Surgery at the Research Institute of the McGill University Health Centre (RI-MUHC).

Ultrasound induces short-lived bubbles (known as cavitation) that create, for a fraction of a microsecond, when they collapse, 'hotspots' of thousands of degrees. Because this bubble formation is a random and infrequent process, scientists have struggled with ways to harness this incredibly powerful phenomenon for assembling materials rather than for destroying them.

The key to the McGill team's finding was developing a way to localize cavitation at the nanoparticles' surface. This led to the discovery that their phosphate coating interacts with unstable radicals created at these hotpots and makes the nanoparticles 'weld' together irreversibly.

Just as a mixologist (cocktail waiter) shakes drinks together to create your favourite martini, materials scientists can now simply mix preformed nanoparticles together and zap them in the ultrasonic bath to create new weird and wonderful hybrid and fully functional microparticle materials, such as conductive ceramic catalysts, magnetic polymers, and drug-loaded metals.

"Our discovery may help alleviate the loss of platinum from catalytic converters in car exhausts, for example. Half of the platinum mined annually worldwide is used to make catalytic converters and up to half of this platinum is lost into the atmosphere during the lifetime of the car. This results from a lack of a better method - up to now - for bonding nanoparticles in a robust and durable manner while still maintaining their activity."

The study's co-author and former McGill doctoral student, David Bassett, helped make the discovery when he spotted something unusual in the bottom of his ultrasonic bath.

"Instead of getting smaller, these things grew and kept on growing. We went up many blind alleys and it took me three years to unravel what was going on. It was painstaking but now it's really satisfying to finally have a grip on it."

.


Related Links
McGill University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Lifelike cooling for sunbaked windows
Boston MA (SPX) Jul 31, 2013
Sun-drenched rooms make for happy residents, but large glass windows also bring higher air-conditioning bills. Now a bioinspired microfluidic circulatory system for windows developed by researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University could save energy and cut cooling costs dramatically - while letting in just as much sunlight. The same circula ... read more


TECH SPACE
Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

TECH SPACE
ISS Astronauts Remotely Control Planetary Rover From Space

Spain museum uses robot to help restore works

Chips that mimic the brain

Humanoid robot that could save people in disasters unveiled

TECH SPACE
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

TECH SPACE
BMW takes 'great leap forward' into electric car market

Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

TECH SPACE
Mideast energy industry under terrorist attack

Sequestration and fuel reserves

Shell rejects Ukrainian-made pipes for Yuzivska shale gas field

WWF urges Britain's Soco not to seek oil in DRC game park

TECH SPACE
TEPCO returns to profit on bailout, rate hikes

Japan nuclear watchdog to beef up Fukushima monitoring

Nuke experts blast Fukushima operator over leaks

Westinghouse and Vitkovice Take First Concrete Steps Towards Building Czech AP1000 Reactors

TECH SPACE
Spanish ministers meet with energy investors on market reforms

Americans continue to use more renewable energy sources

Sweden's Vattenfall hit by $4.6-bn charge as energy demand plunges

Six Tech Advancements Changing the Fossil Fuels Game

TECH SPACE
China passes laws to protect country's rare and ancient trees

Mini-monsters of the forest floor

Computer can infer rules of the forest

Boreal Forests in Alaska Becoming More Flammable




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement