Solar Energy News  
CHIP TECH
Quantum physics sets a speed limit to electronics
by Staff Writers
Vienna, Austria (SPX) Mar 29, 2022

An ultra short laser pulse (blue) creates free charge carriers, another pulse (red) accelerates them in opposite directions.

How fast can electronics be? When computer chips work with ever shorter signals and time intervals, at some point they come up against physical limits. The quantum-mechanical processes that enable the generation of electric current in a semiconductor material take a certain amount of time. This puts a limit to the speed of signal generation and signal transmission.

TU Wien (Vienna), TU Graz and the Max Planck Institute of Quantum Optics in Garching have now been able to explore these limits: The speed can definitely not be increased beyond one petahertz (one million gigahertz), even if the material is excited in an optimal way with laser pulses. This result has now been published in the scientific journal Nature Communications.

Fields and currents
Electric current and light (i.e. electromagnetic fields) are always interlinked. This is also the case in microelectronics: In microchips, electricity is controlled with the help of electromagnetic fields. For example, an electric field can be applied to a transistor, and depending on whether the field is switched on or off, the transistor either allows electrical current to flow or blocks it. In this way, an electromagnetic field is converted into an electrical signal.

In order to test the limits of this conversion of electromagnetic fields to current, laser pulses - the fastest, most precise electromagnetic fields available - are used, rather than transistors.

"Materials are studied that initially do not conduct electricity at all," explains Prof. Joachim Burgdorfer from the Institute for Theoretical Physics at TU Wien.

"These are hit by an ultra-short laser pulse with a wavelength in the extreme UV range. This laser pulse shifts the electrons into a higher energy level, so that they can suddenly move freely. That way, the laser pulse turns the material into an electrical conductor for a short period of time." As soon as there are freely moving charge carriers in the material, they can be moved in a certain direction by a second, slightly longer laser pulse. This creates an electric current that can then be detected with electrodes on both sides of the material.

These processes happen extremely fast, on a time scale of atto- or femtoseconds. "For a long time, such processes were considered instantaneous," says Prof. Christoph Lemell (TU Wien). "Today, however, we have the necessary technology to study the time evolution of these ultrafast processes in detail."

The crucial question is: How fast does the material react to the laser? How long does the signal generation take and how long does one have to wait until the material can be exposed to the next signal? The experiments were carried out in Garching and Graz, the theoretical work and complex computer simulations were done at TU Wien.

Time or energy - but not both
The experiment leads to a classic uncertainty dilemma, as it often occurs in quantum physics: in order to increase the speed, extremely short UV laser pulses are needed, so that free charge carriers are created very quickly. However, using extremely short pulses implies that the amount of energy which is transferred to the electrons is not precisely defined. The electrons can absorb very different energies.

"We can tell exactly at which point in time the free charge carriers are created, but not in which energy state they are," says Christoph Lemell. "Solids have different energy bands, and with short laser pulses many of them are inevitably populated by free charge carriers at the same time."

Depending on how much energy they carry, the electrons react quite differently to the electric field. If their exact energy is unknown, it is no longer possible to control them precisely, and the current signal that is produced is distorted - especially at high laser intensities.

"It turns out that about one petahertz is an upper limit for controlled optoelectronic processes," says Joachim Burgdorfer.

Of course, this does not mean that it is possible to produce computer chips with a clock frequency of just below one petahertz. Realistic technical upper limits are most likely considerably lower. Even though the laws of nature determining the ultimate speed limits of optoelectronics cannot be outsmarted, they can now be analyzed and understood with sophisticated new methods.

Research Report: "The speed limit of optoelectronics"


Related Links
Vienna University of Technology
Graz University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Hot spin quantum bits in silicon transistors
Basel, Switzerland (SPX) Mar 29, 2022
Quantum bits (qubits) are the smallest units of information in a quantum computer. Currently, one of the biggest challenges in developing this kind of powerful computer is scalability. A research group at the University of Basel, working with the IBM Research Laboratory in Ruschlikon, has made a breakthrough in this area. Quantum computers promise unprecedented computing power, but to date prototypes have been based on just a handful of computing units. Exploiting the potential of this new generat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Fuel from waste wood

Breaking down plastic into its constituent parts

Could we make cars out of petroleum residue?

Conversion process turns pollution into cash

CHIP TECH
PickNik Robotics to work with Sierra Space on space robotics

Solving the challenges of robotic pizza-making

Launching robots into lunar caves

Australian startups join forces to test AI computing in space

CHIP TECH
Bionic wing flaps improve wind energy efficiency

India to build Sri Lanka wind farms after China pushed aside

Netherlands doubles wind energy targets for 2030

The Med gets first offshore wind farm as Italy vows energy revolution

CHIP TECH
Interurban Vehicle - Green and comfortable travel even on long journeys

Uber to integrate its network with New York yellow cabs

Toyota pauses most Japan production after quake

Indonesia begins electric car production with Hyundai plant

CHIP TECH
GS Yuasa Lithium Power completes PDR of scalable spacecraft battery

HB11 Energy demonstrates nuclear fusion using a laser

Commercial-scale flow batteries for long-duration energy storage

New 3D thermal management network could increase the safety of electric car batteries

CHIP TECH
UN atomic watchdog chief visits Ukraine nuclear plant

After Ukraine, UN atomic watchdog chief visits Russia

UN nuclear watchdog head visits Ukraine to discuss safety

New pumpkin shaped nucleus radiates protons with record setting rate

CHIP TECH
IEA approves third term for chief pushing clean energy

Study shows that realistic models could make for more environmental wins

The road to renewable energy in Japan, a top CO2 emitter

Will Ukraine war help or hinder green energy transition?

CHIP TECH
Ivory Coast walls up forest to fend off encroaching city

Lost children survive 25-day ordeal in Amazon

How Indigenous burning shaped the Klamath's forests for a millennia

EU urged to ban all imports linked to deforestation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.