Solar Energy News  
TIME AND SPACE
Quantum states reveal themselves with measurable 'fingerprint'
by Staff Writers
Singapore (SPX) May 31, 2017


Measuring the fingerprint of quantum states could help to guard against errors and defective devices in quantum technologies. The existence of such a fingerprint was previously known only for limited cases: researchers in Singapore and the United States have now calculated how to measure a fingerprint for all states of two entangled particles. The findings were published May 26 in Nature Communications. Credit Timothy Yeo / Centre for Quantum Technologies, National University of Singapore

Researchers working in Singapore and the United States have discovered that all entangled states of two particles have a classical 'fingerprint'. This breakthrough could help engineers guard against errors and devices that don't do what they promise in quantum computing and quantum cryptography.

Goh Koon Tong and Valerio Scarani at the Centre for Quantum Technologies at the National University of Singapore, with Andrea Coladangelo at the California Institute of Technology, reported in Nature Communications on 26 May that a simple set of measurements can act as an identity check for any two-particle entangled state. The presence of this fingerprint could help certify quantum computers or quantum encryption devices purchased from third parties.

An entangled quantum state is made of two or more particles held in a multitude of undecided outcomes. Such states are fuel for quantum computing and bring security to quantum communication. The problem is, it is difficult to check that these states have the properties expected of them. That leaves the door open for poorly-functioning devices.

"I like to see our work as bringing the power of testing quantum devices to the consumers who use them. Currently, only those who build the devices or understand the engineering aspect of them can perform the test," says Goh. Quantum physicists could also use this 'self-testing' tool as a check step in lab experiments.

The work builds on results by other groups, extending findings for qubits to the more exotic qudits. Qudits are higher-dimensional quantum bits. Rather than just storing a binary bit of information - a 0 or 1 - a qudit has bigger information density, storing a 0, 1, 2, 3, 4, etc. Such states, though hard to make, are interesting because they could accelerate some computing or communication tasks.

The idea of self-testing is significant because it is generally difficult to gain a lot of information about the quantum state of a particle. A particle's state is described by a 'wave function' that encodes the probabilities for the particle's various properties, such as polarisation or momentum. To be sure about a quantum state, you need to know the whole wave function. However, there is a problem here. Measuring the quantum state reveals just one value - not the full set of possibilities.

The traditional way to try to learn the full quantum state involves a technique called tomography. This requires measuring many copies of the quantum state in different ways, counting up all the outcomes of the various measurements to give a full set of probabilities. It also involves a laborious process of characterising the measurement devices and aligning them with the source of the quantum particles.

Self-testing is more efficient, requiring fewer measurements. It is also 'device-independent', or like blind tomography - needing no characterisation of the measurement device, as long as the device is guaranteed to detect most of the particles. This is because the fingerprint is a pattern of results across measurements of the two particles that could only be consistently created by the weird correlations in the quantum state, not by any classical process or by chance. Seeing this pattern then means the quantum state must be present.

The famous 'CHSH experiment' in quantum physics is an example of fingerprinting for a quantum state of two qubits. To prove that fingerprint tests exist for all two-qudit states, the authors showed that these states can be considered as composed of blocks of two-level systems, akin to qubits. Even better, this mathematical equivalence points to what measurements are needed - although it's not clear yet if they are experimentally-friendly to make.

The team hope that this discovery will motivate a new wave of research to find straightforward ways to incorporate this check in experiments or devices. So far, the signs are good. "Of all my work in the past five years, this has attracted the most attention," says Scarani.

As well as hearing from colleagues interested in the result, he has been invited to give a talk on self-testing at QCrypt, an annual conference on quantum cryptography being held this year in the UK in September.

Reference: Andrea Coladangelo, Goh Koon Tong and Valerio Scarani, "All pure bipartite quantum states can be tested" Nature Communications 8, 15485 (2017);

TIME AND SPACE
A network of crystals for long-distance quantum communication
Geneva, Switzerland (SPX) May 31, 2017
Quantum physic can guarantee that a message has not be intercepted before reaching its destination. Thanks to the laws of quantum physic, a particle of light - a photon - can be in two distinct states simultaneously, comparable to a coin thrown in the air, which is virtually both head and tail before reaching the ground. Like when the coin is grabbed, this superposition of states is destro ... read more

Related Links
Centre for Quantum Technologies at the National University of Singapore
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cold conversion of food waste into renewable energy and fertilizer

Nagoya University researchers break down plastic waste

A more energy-efficient catalytic process to produce olefins

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

TIME AND SPACE
CMU's interactive tool helps novices and experts make custom robots

Tactile feedback adds 'muscle sense' to prosthetic hand

Teaching robots good manners

A glove powered by soft robotics to interact with virtual reality environments

TIME AND SPACE
GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

U.S. states taking up wind energy mantle

Scientists track porpoises to assess impact of offshore wind farms

Dutch open 'world's largest offshore' wind farm

TIME AND SPACE
Engines fire without smoke

Waymo turning tech talent to self-driving trucks

Daimler, VW eye China's electric car market

Germany finds emission-cheating gear on 24,000 Audis in Europe

TIME AND SPACE
Printed, flexible and rechargeable battery can power wearable sensors

Nanoalloys 10 times as effective as pure platinum in fuel cells

Off-the-shelf, power-generating clothes are almost here

Self-healing catalyst films for hydrogen production

TIME AND SPACE
Three Mile Island nuclear plant to close in 2019

Why nuclear could become the next 'fossil' fuel

EU clears EDF takeover of Areva reactor business

Swiss vote for gradual nuclear phaseout, energy makeover

TIME AND SPACE
India vows to 'go beyond' Paris accord, adding pressure on Trump

US states, cities and firms unite behind Paris accord

US may do less harm outside climate pact than in it: analysts

China further opens energy sector to private investment

TIME AND SPACE
Canada provides Can$867 mn to beleaguered softwood sector

Amazon rainforest may be more resilient to deforestation than previously thought

Forensic analysis of wood's chemical signatures could curb illegal logging

PNG expedition discovers largest trees at extreme altitudes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.