Solar Energy News  
EXO WORLDS
Rapid destruction of Earth-like atmospheres by young stars
by Staff Writers
Vienna, Austria (SPX) Apr 26, 2019

illustration only

The discoveries of thousands of planets orbiting stars outside our solar system has made questions about the potential for life to form on these planets fundamentally important in modern science.

Fundamentally important for the habitability of a planet is whether or not it can hold onto an atmosphere, which requires that the atmosphere is not completely lost early in the lifetime of the planet.

A new study by researchers based at the University of Vienna and at the Space Research Institute of the OAW in Graz has shown that young stars can rapidly destroy the atmospheres of potentially-habitable Earth-like planets, which is a significant additional difficulty for the formation of life outside our solar system. The results will appear soon in the journal Astronomy and Astrophysics Letters.

One of the most active and exciting questions in modern science is how abundant planets with Earth-like atmospheres and surface conditions and therefore the potential for harbouring life are in the universe.

Much recent research on this topic has focused on planets orbiting stars called M-dwarfs, which are smaller than our Sun and are the most numerous type of star in our solar system.

The primary driver of atmospheric losses to space is the central star that the planet is orbiting. Stars have strong magnetic fields, and these lead to the emission of high energy X-ray and ultraviolet radiation.

These phenomena are known collectively as the star's 'activity'. At young ages, stars have high levels of activity, and therefore emit extremely large amounts of X-rays and ultraviolet radiation.

As stars age, their activities decrease rapidly. Importantly for planets orbiting M-dwarfs, while the activities of stars like the Sun decrease rapidly after a few hundred million years, M-dwarfs often remain highly active for billions of years.

The high energy radiation is important because it is absorbed high in the atmosphere of a planet, causing the gas to be heated. For the Earth, the gas is heated to temperatures of more than 1000 degrees Celsius in the upper region known as the thermosphere. This is the region in which spacecraft such as satellites and the International Space Station fly.

When orbiting young stars with high activity levels, the thermospheres of planets are heated to much higher temperatures which in extreme cases can cause the gas to flow away from the planet. How rapidly atmospheres in these cases are lost has so far not been explored in detail for Earth-like planets with Earth-like atmospheres.

Researchers based at the University of Vienna and the Space Research Institute of the OAW in Graz have calculated for the first time how rapidly an Earth-like atmosphere would be lost from a planet orbiting a very active young star.

Their calculations have shown that extreme hydrodynamic losses of the atmosphere would take place, leading to an Earth-like atmosphere being entirely lost in less that one million years, which for the evolution of a planet is almost instantaneous.

These results have significant implications for the early evolution of the Earth and for the possibility of Earth-like atmospheres forming around M-dwarfs.

For the Earth, the most likely explanation for why the atmosphere was not lost is that the early atmosphere was dominated by carbon dioxide, which cools the upper atmosphere by emitting infrared radiation to space, thereby protecting it from the heating by the early Sun's high activity.

The Earth's atmosphere could not have become Nitrogen dominated, as it is today, until after several hundred million years when the Sun's activity decrease to much lower levels.

More dramatically, the results of this study imply that for planets orbiting M-dwarf, the planets can only form Earth-like atmospheres and surfaces after the activity levels of the stars decrease, which can take up to several billion years.

More likely is that many of the planets orbiting M-dwarf stars to have very thin or possible no atmospheres. In both cases, life forming in such systems appears less likely than previously believed.

Research paper: Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars
Related Links
University of Vienna
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
Warwick UK (SPX) Apr 18, 2019
A stellar flare ten times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter. The star is the coolest and smallest to give off a rare white-light superflare, and by some definitions could be too small be considered a star. The discovery, funded by the Science and Technology Facilities Council, is published in the Monthly Notices of the Royal Astronomical Society: Letters as the version of record today (17 April) and sheds light on the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Biodegradable bags can hold a full load of shopping after 3 years in the environment

How to take the 'petro' out of the petrochemicals industry

Researchers create artificial mother-of-pearl using bacteria

Harnessing sunlight to pull hydrogen from wastewater

EXO WORLDS
An army of micro-robots can wipe out dental plaque

FEDOR Space Rescuer: Roscosmos 'Trains' Anthropomorphic Robot for Manned Mission

NASA 'Nose' importance of humans, robots exploring together

Snake-inspired robot slithers even better than predecessor

EXO WORLDS
BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

E.ON announces start of construction on South Texas windfarm

EXO WORLDS
GM reports lower sales in China, North America

Ford invests $500 mn in electric vehicle startup Rivian

SwRI develops system to legally test GPS spoofing vulnerabilities in automated vehicles

Judge rules Lyft must follow New York rules for driver minimum wage

EXO WORLDS
Graphene sponge helps lithium sulphur batteries reach new potential

Transforming waste heat into clean energy

China's quest for clean, limitless energy heats up

Artificial intelligence speeds efforts to develop clean, virtually limitless fusion energy

EXO WORLDS
Fuel BU boosts technological innovation with its "Free to Innovate" initiative

Japan to halt nuke plants if anti-terror steps not taken

Japan turns to foreigners to decommission Fukushima plant

Framatome invests 12.6 million euro on its site of Ugine and inaugurates its new VAR furnace

EXO WORLDS
Siemens inches forward in race to revamp Iraq's grid

US charges Chinese engineer with stealing GE technology

New York mayor targets classic skyscrapers with Green New Deal

Lights out around the globe for Earth Hour environmental campaign

EXO WORLDS
Attacks on Brazil's ecological paradises threaten biodiversity

19 arrested in Brazil raids over illegal Amazon logging

Tropical forest the size of England destroyed in 2018: report

Illegal logging in Brazil turns Amazon into a powder keg









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.