Solar Energy News  
TECH SPACE
Reality check for 'wonder material'
by Staff Writers
Groningen, Netherlands (SPX) Jul 31, 2017


For one, their spin - a magnetic property of electrons which can have the values 'up' or 'down' - is locked to their movement. 'This means that electrons moving to the right have spin down, and those moving to the left have spin up', explains first author of the study Eric de Vries, PhD student in the 'Spintronics of Functional Materials' research group led by his supervisor prof. dr. Tamalika Banerjee. This is group is part of the Zernike Institute for Advanced Materials.

Topological insulators, a class of materials which has been investigated for just over a decade, have been heralded as a new 'wonder material', as has graphene. But so far, topological insulators have not quite lived up to the expectations fueled by theoretical studies. University of Groningen physicists now have an idea about why. Their analysis was published on 27 July in the journal Physical Review B.

Topological insulators are materials that are insulating in the bulk but allow charge to flow across the surface. These conducting states at the surface originate from ordering patterns in the states where electrons reside that are different from ordinary materials. This ordering is linked to the physical concept of 'topology', analogous to that used in mathematics. This property gives rise to very robust states with some special properties.

Heavy atoms
For one, their spin - a magnetic property of electrons which can have the values 'up' or 'down' - is locked to their movement. 'This means that electrons moving to the right have spin down, and those moving to the left have spin up', explains first author of the study Eric de Vries, PhD student in the 'Spintronics of Functional Materials' research group led by his supervisor prof. dr. Tamalika Banerjee. This is group is part of the Zernike Institute for Advanced Materials.

'But it also means that when you inject electrons with spin up into such a topological insulator, they will travel to the left!' Topological insulators might therefore be very useful in the realization of spintronics: electronics based on the quantized spin value rather than the charge of electrons.

The special properties of topological insulators are predicted by the theoretical analysis of the surface structures of these materials, made from crystals of heavy atoms. But experiments show mixed results, which don't quite live up to the theoretical predictions. 'We wondered why, so we devised experiments to investigate the behaviour of the surface state electrons. Specifically, we wanted to see if transport is really limited to the surface, or if it is also present in the bulk of the material.'

Surprising
Earlier experiments by the group, in which they used ferromagnets to detect the spins of electrons generated in the topological insulator, were surprising, says De Vries. 'We demonstrated that a voltage presumably originating from spin detection can originate in factors other than the locking of electron spin to its movement.

Using different geometries, we showed that artefacts related to stray magnetic fields generated by the ferromagnets can mimic similar spin voltages.' This observation may lead to a re-evaluation of some published results.

This time, they used a different approach. 'We analyzed the topological insulators using strong magnet fields. This causes electrons to oscillate in transport channels.' De Vries went to the national High Field Magnet Laboratory at the Radboud University Nijmegen, where a 33-Tesla magnet is available, one of the stronger magnets in the world.

'Others have done similar tests with weaker magnets, but these are not sensitive enough to reveal the additional transport channels that coexist with the surface states.' De Vries's experiments showed that a considerable part of the charge transport occurred in the bulk phase of the material, and not only at the surface.

Transport channels
The reason for this, explains De Vries, is the imperfect crystal structure of the topological insulator. 'Sometimes there are atoms missing in the crystal structure. This results in freely moving electrons. These start to conduct as new transport channels, generating electric current in the bulk of the material.'

So why has no one noted this before? De Vries stresses that interpreting transport measurements made on topological insulators can be difficult. 'We experienced this in our previous experiments. Our message is that extreme care is needed in the interpretation of experimental observations for devices based on these materials.' Also, experiments which might lead to clearer conclusions require very high magnetic fields in specialized labs.

Glitches
The results point to a way to improve topological insulators. 'The key is to grow the crystals without any missing atoms. Another solution is to fill the holes, for example with calcium ions that bind the free electrons. But that might cause other disturbances to the electrons' mobility.' For ten years, topological insulators were all the rage.

They were compared to the wonder material graphene. The discovery that, in practice, topological insulators have glitches serves as a reality check. De Vries: 'We need to study and understand the interaction between the surface states and the bulk material in much more detail.'

Research paper

TECH SPACE
Engineering on a blue streak
Newark DE (SPX) Jul 31, 2017
A pair of engineers at the University of Delaware has developed a process to form interwoven polymer networks more easily, quickly and sustainably than traditional methods allow. Their secret ingredient? Blue light. Abhishek Shete, graduate research assistant in materials science and engineering, and Christopher Kloxin, assistant professor in materials science and engineering and chemical ... read more

Related Links
University of Groningen
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Biochar could clear the air in more ways than one

New light-activated catalyst grabs CO2 to make ingredients for fuel

Algae cultivation technique could advance biofuels

Fungi that evolved to eat wood offer new biomass conversion tool

TECH SPACE
Mishap doesn't dampen enthusiasm for security robots

Somersaulting simulation for jumping bots

Watch out Messi, here come the footballers at RoboCup

Designing soft robots: Ethics-based guidelines for human-robot interactions

TECH SPACE
U.S. wind power momentum up 40 percent from last year

Shale-rich Oklahoma to host mega-wind farm

ABB wins $30 million order to support integration of offshore wind energy in the UK

GE's renewables not enough to boost overall revenue

TECH SPACE
BMW sticks to cautious forecast as profits shift up

Volkswagen to refit 1 million more diesel cars in Germany

Global momentum underway for electric vehicles

Los Angeles to have fully electric bus fleet by 2030

TECH SPACE
Molecular microscopy illuminates molecular motor motion

Scientists map ways forward for lithium-ion batteries for extreme environments

New chromium-based superconductor has an unusual electronic state

High-temperature superconductivity in B-doped Q-carbon

TECH SPACE
Construction of two nuclear power plants in US halted

Areva signs MOX fuel fabrication contract with Japan

Nuclear contaminates earnings of France's EDF

Underwater robot probes inside Fukushima reactor

TECH SPACE
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

TECH SPACE
US firms buying timber from illegal PNG logging: NGO

Poland to keep logging in ancient forest: minister

EU warns Poland to obey logging ban in ancient forest

Study reinforces the Amazon forest's importance in regulating atmospheric chemistry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.