Led by Associate Professor Masahiro Nakano from Kanazawa University's Institute of Science and Engineering, in partnership with REIKO Co., Ltd. and Queen's University at Kingston, the team successfully engineered organic solar cells that achieve 8.7% power conversion efficiency (PCE) - more than double the previous benchmark of 4%.
This leap in performance overcomes two longstanding technological barriers. First, earlier organic solar cells lacked suitable transparent electrodes that could be produced without harming the device's organic layers. Conventional fabrication methods relied on corrosive chemicals or temperatures exceeding 150oC. The team instead utilized the conductive polymer PEDOT:PSS to produce transparent electrodes at just 80oC, without strong acids or bases, achieving sheet resistance below 70 O/sq.
Second, traditional solution-based processes risk damaging underlying layers when stacking new films. The researchers addressed this by creating a lamination technique using carbon nanotube electrodes. These electrodes are fabricated independently and then affixed to the solar cell, preserving the integrity of internal layers during assembly.
The implications of this innovation are significant. All-organic solar cells are lightweight, flexible, and free from hazardous materials, making them ideal for use in agriculture, wearable technology, and installations where traditional panels are impractical. The research team aims to further boost efficiency by enhancing the conductivity of organic electrode materials.
Related Links
Kanazawa University
All About Solar Energy at SolarDaily.com
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |