![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Tokyo, Japan (SPX) Oct 17, 2019
The power conversion efficiencies of organic solar cells (OSCs) based on blends of electron donor (D) and acceptor (A) semiconducting materials now exceed 16%. However, it is still lower than that of highly efficient inorganic SCs such as GaAs. The charge generation efficiency in OSCs nowadays is nearly 100%, thus reducing the energy loss in output voltage is critically important for further enhancing the efficiency of organic solar cells. Group of Assistant Professor Seiichiro Izawa and Professor Masahiro Hiramoto at Institute for Molecular Science in Japan report that OSCs with high mobility and highly crystalline donor (D) and acceptor (A) materials were able to reduce an open-circuit voltage (VOC) loss. Researchers fabricated model bilayer OSCs using these molecules (Fig. 1a). The crystallinity of the acceptor layer could be altered by appropriate selection of the three molecules with different alkyl side-chain lengths. The VOC was found to increase as the crystallinity of acceptor layer increased. The VOC loss was very small comparing to the values of reported OSCs (Fig 1b). The origin of the high VOC was that the highly crystalline D/A interface reduced the energy loss related to charge recombination in the output voltage by realizing ideal band-to-band recombination. Especially, the high crystallinity of the several molecular layers (less than 6 nm) in the vicinity of the D/A interface was important for realizing the high VOC. The results demonstrate that careful design of the D/A interface enables high power conversion efficiencies to be achieved in OSCs by reducing open-circuit voltage loss.
![]() ![]() Exide announces major solar partnership in Spain Soria, Spain (SPX) Oct 14, 2019 Battery manufacturer Exide Technologies, a global provider of stored electrical energy solutions, has announced a major new solar installation to power its factory at San Esteban de Gormaz in Soria, Spain. The installation will enable Exide to draw much of its power from renewable sources at the site, leading to large reductions in CO2 emissions. The landmark project will be delivered through a 15-year agreement with international energy group EDP, and follows a similar solar partnership between E ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |