Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
Reinterpreting dark matter
by Staff Writers
Leioa, Spain (SPX) Sep 19, 2014


This figure shows that in galaxies the structure is very different in the interpretation of the wave, which has been carried out in this research; the research predicts the soliton of dark matter in the centre surrounded by an extensive halo of dark matter in the form of large "spots", which are the slowly fluctuating density waves. This leads to many predictions and solves the problem of puzzling cores in smaller galaxies.

Tom Broadhurst, an Ikerbasque researcher at the UPV/EHU's Department of Theoretical Physics, has participated alongside scientists of the National Taiwan University in a piece of research that explores cold dark matter in depth and proposes new answers about the formation of galaxies and the structure of the Universe.

These predictions, published in the prestigious journal Nature Physics, are being contrasted with fresh data provided by the Hubble space telescope.

In cosmology, cold dark matter is a form of matter the particles of which move slowly in comparison with light, and interact weakly with electromagnetic radiation. It is estimated that only a minute fraction of the matter in the Universe is baryonic matter, which forms stars, planets and living organisms. The rest, comprising over 80%, is dark matter and energy.

The theory of cold dark matter helps to explain how the universe evolved from its initial state to the current distribution of galaxies and clusters, the structure of the Universe on a large scale. In any case, the theory was unable to satisfactorily explain certain observations, but the new research by Broadhurst and his colleagues sheds new light in this respect.

As the Ikerbasque researcher explained, "guided by the initial simulations of the formation of galaxies in this context, we have reinterpreted cold dark matter as a Bose-Einstein condensate". So, "the ultra-light bosons forming the condensate share the same quantum wave function, so disturbance patterns are formed on astronomic scales in the form of large-scale waves".

This theory can be used to suggest that all the galaxies in this context should have at their centre large stationary waves of dark matter called solitons, which would explain the puzzling cores observed in common dwarf galaxies.

The research also makes it possible to predict that galaxies are formed relatively late in this context in comparison with the interpretation of standard particles of cold dark matter. The team is comparing these new predictions with observations by the Hubble space telescope.

The results are very promising as they open up the possibility that dark matter could be regarded as a very cold quantum fluid that governs the formation of the structure across the whole Universe.

This is not Thomas Broadhurst's first publication in the prestigious journal Nature. In 2012, he participated in a piece of research on a galaxy of the epoch of the reionization, a stage in the early universe not explored previously and which could be the oldest galaxy discovered. This research opened up fresh possibilities to conduct research into the first galaxies to emerge after the Big Bang.

Tom Broadhurst has a PhD in Physics from the University of Durham (United Kingdom); until joining Ikerbasque he did his research at top research centres in the United Kingdom, United States, Germany, Israel, Japan and Taiwan. He has had 184 papers published in leading scientific journals, and so far has received 11,800 citations.

In 2010, he was recruited by Ikerbasque and carries out his work in the UPV/EHU's department of Theoretical Physics. His line of research focusses on observational cosmology, dark matter and the formation of galaxies.

.


Related Links
UPV/EHU-University of the Basque Country
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Researcher advances a new model for dark matter
Lawrence KS (SPX) Sep 05, 2014
Astrophysicists believe that about 80 percent of the substance of our universe is made up of mysterious "dark matter" that can't be perceived by human senses or scientific instruments. "Dark matter has not yet been detected in a lab. We infer about it from astronomical observations," said Mikhail Medvedev, professor of physics and astronomy at the University of Kansas, who has just publish ... read more


STELLAR CHEMISTRY
3D imaging may improve understanding of biofuel plant materials

Ethanol fireplaces: the underestimated risk

ACCESS II Confirms Jet Biofuel Burns Cleaner

Scientists create renewable fossil fuel alternative using bacteria

STELLAR CHEMISTRY
Cutting the cord on soft robots

iRobot supplying its PackBots to Canada

Watch MIT's Atlas robot carry heavy objects

DARPA issues RFI for robotic space services for satellites

STELLAR CHEMISTRY
RWE Innogy gets new British wind energy running

Moventas to service two turbines in Eesti Energia's Aulepa wind park

Wind Turbines Outperforming Expectations at Honda Transmission Plant

Stealth wind turbines to become operational in France in 2015

STELLAR CHEMISTRY
BYU electric car sets new E1 land speed record at 204 mph

Nissan to make luxury cars in new China joint venture

Automaker gets first permit in the Golden State

150-car pile-up kills two in Netherlands

STELLAR CHEMISTRY
Novel capability enables first test of real turbine engine conditions

Water-Based Nuclear Battery Can Be Used To Generate Electrical Energy

Ditching coal a massive step to climate goal: experts

China bans 'dirty' coal sale, imports

STELLAR CHEMISTRY
South Africa in '$50 bn deal' for Russian nuclear reactors

Japan minister attempts to convince public on nuclear

Britain's blockbuster nuclear deal to get EU nod

Finnish Greens quit government in nuclear row

STELLAR CHEMISTRY
New research suggests China's CO2 output is almost twice U.S.'s

Why China's Insatiable Appetite For Coal Has Likely Peaked

Study urges 15-year plan for low-carbon growth

IRENA: Outdated thinking curbing green energy momentum

STELLAR CHEMISTRY
Major palm oil companies to halt deforestation

Britain pledges funds in fight against deforestation

Smithsonian Scientists Discover Tropical Tree Microbiome in Panama

Global change: Trees continue to grow at a faster rate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.