Solar Energy News  
BIO FUEL
Renewable fuel from carbon dioxide with the aid of solar energy
by Staff Writers
Linkoping, Sweden (SPX) Jun 10, 2020

Researchers at Linkoping University work with the growth reactor in which cubic silicon carbide is made.

Researchers at Linkoping University, Sweden, are attempting to convert carbon dioxide, a greenhouse gas, to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique to selectively produce methane, carbon monoxide or formic acid from carbon dioxide and water. The study has been published in ACS Nano.

Plants convert carbon dioxide and water to oxygen and high-energy sugars, which they use as "fuel" to grow. They obtain their energy from sunlight. Jianwu Sun and his colleagues at Linkoping University are attempting to imitate this reaction, known as photosynthesis, used by plants to capture carbon dioxide from air and convert it to chemical fuels, such as methane, ethanol and methanol. The method is currently at a research stage, and the long-term objective of the scientists is to convert solar energy to fuel efficiently.

"By converting carbon dioxide to fuel with the aid of solar energy, this technique could contribute to the development of sources of renewable energy and reduce the impact on the climate of the combustion of fossil fuels", says Jianwu Sun, senior lecturer in the Department of Physics, Chemistry and Biology at Linkoping University.

Graphene is one of the thinnest materials that exist, consisting of a single layer of carbon atoms. It is elastic, flexible, transparent to sunlight, and a good conductor of electricity.

This combination of properties ensures that graphene has potential for use in applications such as electronics and biomedicine. But graphene alone is not suitable for the solar energy conversion application sought by the LiU researchers, and they have therefore combined the graphene with a semiconductor, cubic silicon carbide (3C-SiC).

Scientists at Linkoping University have previously developed a world-leading method to grow graphene on cubic silicon carbide, which consists of carbon and silicon. When the silicon carbide is heated, the silicon is vaporised, while the carbon atoms remain and re-construct in the form of a graphene layer.

The researchers have previously shown that it is possible to place up to four layers of graphene on top of each other in a controlled manner.

They have combined the graphene and cubic silicon carbide to develop a graphene-based photoelectrode that preserves the ability of cubic silicon carbide to capture the energy of sunlight and create charge carriers. The graphene functions as a conducting transparent layer while protecting the silicon carbide.

The performance of the graphene-based technique is controlled by several factors, an important one of which is the quality of the interface between the graphene and the semiconductor. The scientists have looked at the properties of this interface in detail.

They show in the article that they can tailor the layers of graphene on the silicon carbide and control the properties of the graphene-based photoelectrode. The conversion of carbon dioxide is in this way made more efficient, while the stabilities of the components are at the same time improved.

The photoelectrode developed by the researchers can be combined with cathodes of various metals, such as copper, zinc or bismuth. Different chemical compounds, such as methane, carbon monoxide and formic acid, can be selectively formed from carbon dioxide and water by selecting suitable metal cathodes.

"Most importantly, we have demonstrated that we can use solar energy to control the conversion of carbon dioxide to methane, carbon monoxide or formic acid", says Jianwu Sun.

Methane is used as a fuel in vehicles adapted to use gaseous fuels. Carbon monoxide and formic acid can either be further processed such that they can function as fuels, or they can be used in industry."

Research Report: "Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion"


Related Links
Linkoping University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Bricks made from plastic, organic waste
Adelaide, Australia (SPX) May 27, 2020
Revolutionary 'green' types of bricks and construction materials could be made from recycled PVC, waste plant fibres or sand with the help of a remarkable new kind of rubber polymer discovered by Australian scientists. The rubber polymer, itself made from sulfur and canola oil, can be compressed and heated with fillers to create construction materials of the future, say researchers in the Young Chemist issue of Chemistry - A European Journal. "This method could produce materials that may one ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Bricks made from plastic, organic waste

Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

BIO FUEL
Robot dog hounds Thai shoppers to keep hands virus-free

Algorithm quickly simulates a roll of loaded dice

The concept of creating brain-on-chip revealed

Denmark develops robot to conduct coronavirus tests

BIO FUEL
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

BIO FUEL
S. Korea's self-driving upstarts take on tech giants

Southern California's Marengo Charging Plaza officially opens to the public

Volkswagen invests 2 bn euros in Chinese electric vehicle sector

Top German court to rule on VW 'Dieselgate' compensation

BIO FUEL
New material, modeling methods promise advances in energy storage

An unusual choice of material yields incredibly long-lasting batteries

Surprise link found to edge turbulence in fusion plasma

Next-gen laser facilities look to usher in new era of relativistic plasmas research

BIO FUEL
Steel Guard Safety expands product lines for radiation shielding in nuclear power plants

Framatome completes acquisition of BWXT's US commercial nuclear services

Framatome to provide engineering services to EDF in the United Kingdom

EDF submits plans for controversial UK nuclear plant

BIO FUEL
UK electricity plant nears full switch away from coal

World needs 'green recovery', health pros tell G20 leaders

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

BIO FUEL
Football pitch of rainforest destroyed every six seconds

Trees in forests all over the world are getting younger, shorter

Tropical forests can handle the heat, up to a point

Uruguay renegotiates $3 bn pulp plant deal with Finland's UPM









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.