Solar Energy News  
TIME AND SPACE
Research pushes concept of entropy out of kilter
by Staff Writers
Providence RI (SPX) Feb 03, 2017


Fluorescent stained DNA molecules make their way across of fluid channel pocked with tiny pits. The pits act as 'entropic barriers.' Image courtesy Stein lab / Brown University.

Entropy, the measure of disorder in a physical system, is something that physicists understand well when systems are at equilibrium, meaning there's no external force throwing things out of kilter. But new research by Brown University physicists takes the idea of entropy out of its equilibrium comfort zone. The research, published in Physical Review Letters, describes an experiment in which the emergence of a non-equilibrium phenomenon actually requires an entropic assist.

"It's not clear what entropy even means when you're moving away from equilibrium, so to have this interplay between a non-equilibrium phenomenon and an entropic state is surprising," said Derek Stein, a Brown University physicist and co-author of the work. "It's the tension between these two fundamental things that is so interesting."

The phenomenon the research investigated is known as "giant acceleration of diffusion," or GAD. Diffusion is the term used to describe the extent to which small, jiggling particles spread out. The jiggling refers to Brownian motion, which describes the random movement of small particles as a result of collisions with surrounding particles. In 2001, a group of researchers developed a theory of how Brownian particles would diffuse in a system that was pushed out of equilibrium.

Imagine jiggling particles arranged on a surface with undulating bumps like a washboard. Their jiggle isn't quite big enough to enable the particles to jump over the bumps in the board, so they don't diffuse much at all. However, if the board were tilted to some degree (in other words, moved out of equilibrium) the bumps would become easier to jump over in the downward-facing direction.

As tilt begins to increase, some particles will jiggle free of the washboard barriers and run down the board, while others will stay put. In physics terms, the particles have become more diffusive - more spread-out - as the system is moved out of equilibrium. The GAD theory quantifies this diffusivity effect and predicts that as tilt starts to increase, diffusivity accelerates. When the tilt passes the point where all the particles are able to jiggle free and move down the washboard, then diffusivity decreases again.

The theory is important, Stein says, because it's one of only a few attempts to make solid predictions about how systems behave away from equilibrium. It's been tested in a few other settings and has been found to make accurate predictions.

But Stein and his team wanted to test the theory in an unfamiliar setting - one that introduces entropy into the mix.

For the experiment, Stein and his colleagues placed DNA strands into nanofluidic channels - essentially, tiny fluid-filled hallways through which the molecules could travel. The channels were lined however with nanopits - tiny rectangular depressions that create deep spots within the relatively narrower channels.

At equilibrium, DNA molecules tend to arrange themselves in disordered, spaghetti-like balls. As a result, when a molecule finds its way into a nanopit where it has more room to form a disordered ball, it tends to stay stuck there. The pits can be seen as being somewhat like the dips between bumps on the theoretical GAD washboard, but with a critical difference: The only thing actually holding the molecule in the pit is entropy.

"This molecule is randomly jiggling around in the pit - randomly selecting different configurations to be in - and the number of possible configurations is a measure of the molecule's entropy," Stein explained. "It could, at some point, land on a configuration that's thin enough to fit into the channel outside the pit, which would allow it to move from one pit to another. But that's unlikely because there are so many more shapes that don't go through than shapes that do. So the pit becomes an 'entropic barrier.'"

Stein and his colleagues wanted to see if the non-equilibrium GAD dynamic would still emerge in a system where the barriers were entropic. They used a pump to apply pressure to the nanofluidic channels, pushing them out of equilibrium. They then measured the speeds of each molecule to see if GAD emerged. What they saw was largely in keeping with the GAD theory. As the pressure increased toward a critical point, the diffusivity of the molecules increased - meaning some molecules zipped across the channel while others stayed stuck in their pits.

"It wasn't at all clear how this experiment would come out," Stein said. "This is a non-equilibrium phenomenon that requires barriers, but our barriers are entropic and we don't understand entropy away from equilibrium."

The fact that the barriers remained raises interesting questions about the nature of entropy, Stein says.

"Non-equilibrium and entropy are two concepts that are kind of at odds, but we show a situation in which one depends on the other," he said. "So what's the guiding principle that tells what the tradeoff is between the two? The answer is: We don't have one, but maybe experiments like this can start to give us a window into that."

In addition to the more profound implications, there may also be practical applications for the findings, Stein says. The researchers showed that they could estimate the tiny piconewton forces pushing the DNA forward just by analyzing the molecules' motion. For reference, one newton of force is roughly the weight of an average apple. A piconewton is one trillionth of that.

The experiment also showed that, with the right amount of pressure, the diffusivity of the DNA molecules was increased by factor of 15. So a similar technique could be useful in quickly making mixtures. If such a technique were developed to take advantage of GAD, it would be a first, Stein says.

"No one has ever harnessed a non-equilibrium phenomenon for anything like that," he said. "So that would certainly be an interesting possibility."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Study reveals substantial evidence of holographic universe
Southampton, UK (SPX) Jan 31, 2017
A UK, Canadian and Italian study has provided what researchers believe is the first observational evidence that our universe could be a vast and complex hologram. Theoretical physicists and astrophysicists, investigating irregularities in the cosmic microwave background (the 'afterglow' of the Big Bang), have found there is substantial evidence supporting a holographic explanation of the univers ... read more


TIME AND SPACE
A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

Populus dataset holds promise for biofuels, materials, metabolites

TIME AND SPACE
500 years of robots go on show in London

Switzerland orders Protector remote weapon stations

Transparent gel-based robots can catch and release live fish

MIT's wearable AI system can detect a conversation's tone

TIME AND SPACE
Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

Russia's nuclear giant pushes into wind energy

The power of wind energy and how to use it

Largest US offshore wind farm gets green light

TIME AND SPACE
Volvo Cars posts strong earnings on record sales

Germany, France plan cross-border self-driving test zone

Pedal power revival as bike-share apps race for glory

Luxembourg prosecutes unknown person in VW scandal

TIME AND SPACE
Portable superconductivity systems for small motors

How to recycle lithium batteries

Building a better microbial fuel cell - using paper

Researchers flip script for Li-Ion electrolytes to simulate better batteries

TIME AND SPACE
Iran imports 149 tonnes of uranium from Russia: atomic chief

France's Areva picks up Japanese investors

Three new uranium minerals from Utah

Russia 'ready' to entirely fund Hungary nuclear plant

TIME AND SPACE
Electricity costs: A new way they'll surge in a warming world

Republican ex-top diplomats propose a carbon tax

Climate change may overload US electrical grid: study

Action is needed to make stagnant CO2 emissions fall

TIME AND SPACE
Honduras manages to stall pine-munching bugs' march

Amazon forest was transformed by ancient people: study

Coastal wetlands excel at storing carbon

Wetlands play vital role in carbon storage, study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.