. Solar Energy News .




.
CHIP TECH
Researchers Break Light-Matter Coupling Strength Limit in Nanoscale Semiconductors
by Staff Writers
Philadelphia PA (SPX) Jun 20, 2011

A computer simulation of a one-dimensional cavity wave in a 200nm nanowire.

New engineering research at the University of Pennsylvania demonstrates that polaritons have increased coupling strength when confined to nanoscale semiconductors. This represents a promising advance in the field of photonics: smaller and faster circuits that use light rather than electricity.

The research was conducted by assistant professor Ritesh Agarwal, postdoctoral fellow Lambert van Vugt and graduate student Brian Piccione of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science. Chang-Hee Cho and Pavan Nukala, also of the Materials Science department, contributed to the study.

Their work was published in the journal Proceedings of the National Academy of Sciences.

Polaritons are quasiparticles, combinations of physical particles and the energy they contribute to a system that can be measured and tracked as a single unit. Polaritons are combinations of photons and another quasiparticle, excitons. Together, they have qualities of both light and electric charge, without being fully either.

"An exciton is a combination of a an electron, which has negative charge and an electron hole, which has a positive charge. Light is an oscillating electro-magnetic field, so it can couple with the excitons," Agarwal said. "When their frequencies match, they can talk to one another; both of their oscillations become more pronounced."

High light-matter coupling strength is a key factor in designing photonic devices, which would use light instead of electricity and thus be faster and use less power than comparable electronic devices. However, the coupling strength exhibited within bulk semiconductors had always been thought of as a fixed property of the material they were made of.

Agarwal's team proved that, with the proper fabrication and finishing techniques, this limit can be broken.

"When you go from bulk sizes to one micron, the light-matter coupling strength is pretty constant," Agarwal said. "But, if you try to go below 500 nanometers or so, what we have shown is that this coupling strength increases dramatically."

The difference is a function of one of nanotechnology's principle phenomena: the traits of a bulk material are different than structures of the same material on the nanoscale.

"When you're working at bigger sizes, the surface is not as important. The surface to volume ratio - the number of atoms on the surface divided by the number of atoms in the whole material - is a very small number," Agarwal said. "But when you make a very small structure, say 100 nanometers, this number is dramatically increased. Then what is happening on the surface critically determines the device's properties."

Other researchers have tried to make polariton cavities on this small a scale, but the chemical etching method used to fabricate the devices damages the semiconductor surface. The defects on the surface trap the excitons and render them useless.

"Our cadmium sulfide nanowires are self-assembled; we don't etch them. But the surface quality was still a limiting factor, so we developed techniques of surface passivation. We grew a silicon oxide shell on the surface of the wires and greatly improved their optical properties," Agarwal said.

The oxide shell fills the electrical gaps in the nanowire surface, preventing the excitons from getting trapped.

"We also developed tools and techniques for measuring this light-matter coupling strength," Piccione said. "We've quantified the light-matter coupling strength, so we can show that it's enhanced in the smaller structures,"

Being able to quantify this increased coupling strength opens the door for designing nanophotonic circuit elements and devices.

"The stronger you can make light-matter coupling, the better you can make photonic switches," Agarwal said. "Electrical transistors work because electrons care what other electrons are doing, but, on their own, photons do not interact with each other. You need to combine optical properties with material properties to make it work"

This research was supported by the Netherlands Organization for Scientific Research Rubicon Programme, the U.S. Army Research Office, the National Science Foundation, Penn's Nano/Bio Interface Center and the National Institutes of Health.




Related Links
University of Pennsylvania
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Researchers record two-state dynamics in glassy silicon
Champaign IL (SPX) Jun 17, 2011
Using high-resolution imaging technology, University of Illinois researchers have answered a question that had confounded semiconductor researchers: Is amorphous silicon a glass? The answer? Yes - until hydrogen is added. Led by chemistry professor Martin Gruebele, the group published its results in the journal Physical Review Letters. Amorphous silicon (a-Si) is a semiconductor popular fo ... read more


CHIP TECH
New biofuel sustainability assessment tool and GHG calculator released

ORNL neutrons, simulations reveal details of bioenergy barrier

Iowa State hybrid lab combines technologies to make biorenewable fuels and products

First wood-digesting enzyme found in bacteria could boost biofuel production

CHIP TECH
Genius of Einstein, Fourier key to new humanlike computer vision

Industry Helps Engineering Students Reanimate Robotic Mine Vehicles

The hand as a joystick

Guide vests robotic navigation aids for the visually impaired

CHIP TECH
PSC Allows Installation of Largest Land-Based Wind Turbines in NY

Olympic Steel Installs Wind Turbine

Siemens unveils wind turbine prototype

German port's future blowing in the wind

CHIP TECH
HALL Wines Installs ECOtality's Blink EV Charging Station

Japan's Mazda eyes return to profit, Mexico plant

Toyota optimistic on restoring American production

Chinese firms set to take majority control of Saab

CHIP TECH
Improving LED lighting

Venstar Thermostat Saves Energy by Automatically Controlling HVAC Systems

Vietnamese hold anti-China rally amid sea spat

New insights on an old material will enable design of better polymer batteries, water purification

CHIP TECH
Building 2D graphene metamaterials and 1-atom-thick optical devices

Singapore researchers invent broadband graphene polarizer

Iowa State physicists explain the long, useful lifetime of carbon-14

New form of girl's best friend is lighter than ever

CHIP TECH
Population growth spurs surge to Asia's cities

China prepares for summer power crisis

The Energy Debate Coal Versus Nuclear

Significant Jobs and Economic Development Relative to New Transmission

CHIP TECH
Euro ministers to seek forests agreement

Integrating agriculture and forestry in the landscape is key to REDD

Landless workers protest Amazon killings

WWF says Croatia is destroying 'Europe's Amazon'


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement