Subscribe free to our newsletters via your
. Solar Energy News .




MILTECH
Researchers Develop World's Highest Quantum Efficiency UV Photodetectors
by Staff Writers
Chicago IL (SPX) Dec 16, 2013


Photodetector grown on silicon. (a) Plan-view of illustration of processed array. (b) Plan-view SEM image of the processed photodetectors demonstrated crack-free surface. (c) Cross-sectional SEM image of the processed photodetector.

Researchers from Northwestern University's McCormick School of Engineering and Applied Science have developed the world's highest quantum efficiency ultraviolet (UV) photodetector, an advance in technology that could aid in the detection of missiles and chemical and biological threats.

The development of UV photodetectors has been driven by numerous applications in the defense, commercial, and scientific arenas. Until recently, photomultiplier tubes or silicon photodectors with UV band-pass filters were the only viable options for imaging in this important spectral range. Thanks to technological and scientific advances in the III-Nitride material system, high aluminum composition AlxGa1-xN-based semiconductor structures have become a promising alternative.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at McCormick, and her group have brought this AlxGa1-xN-based dream device closer to reality by developing a compact photodetector with the world's highest quantum efficiency.

"Heat sources such as flames, jet engines, or missile plumes emit light throughout the UV portion of the spectrum corresponding to their black-body temperature," said Razeghi, director of Northwestern's Center for Quantum Devices.

"These manmade UV sources can easily be detected at wavelengths less than 290 nanometers due to the non-existence of a terrestrial background signature. The military, in particular, is interested in developing ground- and air-based solar-blind sensors to detect the UV signature of an active missile plume and provide early warning and potentially allow for missile tracking and ultimately interception."

The military could also use the UV detectors and sources to detect biological threats.

"Biological agents could have devastating effects on public health, as the anthrax scare of 2001 made us all too aware," said Erdem Cicek, a graduate student in Razeghi's lab.

"There is a significant lag time between a covert attack and the widespread appearance of symptoms, which makes the general lack of readily available real-time detection systems a significant problem.

"The low-cost UV photodetectors we developed can be used as a critical weapon in the defense against a bio-terror attack, allowing authorities time to warn the population, identify the contaminated areas, and enact quarantine procedures before the exposure overwhelms response capabilities."

Conventionally, AlxGa1-xN-based solar-blind photodetector structures are grown at a reactor pressure of 50 millibar. Razeghi's group observed that reducing the growth pressure helps to suppress parasitic pre-reactions and yields more manageable growth rates while still maintaining good material quality.

By refining the low-pressure metal-organic chemical-vapor-deposition growth as well as the UV photodetector p-i-n structure, Razeghi's group has successfully fabricated the world's highest quantum efficiency solar-blind UV photodetectors grown on sapphire substrate (Fig. 1).

Although sapphire is the most common choice for back-illuminated devices, researchers also developed alternative low-cost UV photodetectors grown on silicon substrate. Razeghi's group used a novel maskless Lateral Epitaxial Overgrowth (LEO) technique for the growth of a high-quality aluminum nitride (AlN) template layer on silicon substrate. Following the template growth, a p-i-n structure is grown and processed. The flip-chip hybridized and substrate-removed array is shown in Fig. 2.

This low-cost approach eventually led to the world's first successful implementation of UV-PD structure grown on a silicon substrate. A paper describing the findings, "AlxGa1-xN-Based Solar-Blind Photodetector Based on Lateral Epitaxial Overgrowth of AlN on Si Substrate," was published October 30 in the journal Applied Physics Letters.

The researchers will now work to achieve higher than 95 percent operability UV focal plane array with high uniformity.

A paper describing the results, "AlxGa1-xN-Based Back-Illuminated Solar-Blind Photodetectors with External Quantum Efficiency of 89%," was published November 5 in the journal Applied Physics Letters.

.


Related Links
McCormick School of Engineering and Applied Science
The latest in Military Technology for the 21st century at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MILTECH
Switzerland, Austria seek U.S. Foreign Military Sales deals
Washington (UPI) Dec 6, 2013
Two European countries are separately seeking support services and aircraft from the United States under the Foreign Military Sales Program. The U.S. Defense Security Cooperation agency, in its required notifications to Congress, said the sales would have a combined value of $307 million. Switzerland is seeking participation in the F/A-18 Engine Component Improvement Program, spa ... read more


MILTECH
Ground broken on $6 million Hungarian farm biogas plant

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

Turning waste into power with bacteria and loofahs

MILTECH
Robot herder brings the cows in for milking in Australia

NASA Developing Legs for ISS Robonaut 2

Literal Android: Google develops robots to replace people in manufacturing, retail

Droids dance, dogs nuzzle, humanoids speak at Madrid robot museum

MILTECH
Wind energy: TUV Rheinland certifies PowerWind wind turbines

Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

Ethiopia spearheads green energy in sub-Saharan Africa

MILTECH
Renault signs $1.3 bn joint venture deal with China's Dongfeng

Ford to open plants in China, Brazil; add 5,000 US jobs

European scientists say device could let police remotely halt vehicles

Peugeot confirms in talks with Chinese carmaker, GM pulls out

MILTECH
Can We Turn Unwanted Carbon Dioxide Into Electricity

Deep Carbon Observatory scientists discover quick recipe for producing hydrogen

Negative resistivity leads to positive resistance in the presence of a magnetic field

Lockheed Martin Manufacturing Tanks to Store and Transport Liquefied Natural Gas

MILTECH
Ratepayers Could Save $1.7 Billion If Aging Nuclear Plant At Hanford, Washington Is Closed

US Risks Losing Critical Clean Electricity if Nuclear Power Plants Keep Closing at Steady Pace

US takes last shipment of Russian uranium

Company says no danger after fire at US nuclear plant

MILTECH
Ukraine's Two New Energy Deals

Keeping the lights on

Global energy demand to increase 35 percent: ExxonMobil

Who Is Keeping the Lights on in California?

MILTECH
Young tropical forests contribute little to biodiversity conservation

More logging, deforestation may better serve climate in some areas

Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement