Subscribe free to our newsletters via your
. Solar Energy News .




FARM NEWS
Researchers Find Novel Way Plants Pass Traits to Next Generation
by Emily Caldwell for OSU News
Columbus OH (SPX) Apr 02, 2013


Jay Hollick.

New research explains how certain traits can pass down from one generation to the next - at least in plants - without following the accepted rules of genetics.

Scientists have shown that an enzyme in corn responsible for reading information from DNA can prompt unexpected changes in gene activity - an example of epigenetics.

Epigenetics refers to modifications in the genome that don't directly affect DNA sequences. Though some evidence has suggested that epigenetic changes can bypass DNA's influence to carry on from one generation to the next, this is the first study to show that this epigenetic heritability can be subject to selective breeding.

Researchers bred 10 generations of corn and found that one particular gene's activity persisted from one generation to the next whether the enzyme was functioning or not - meaning typical genetic behavior was not required for the gene's trait to come through. And that, the scientists determined, was because the enzyme targets a tiny piece of DNA - previously thought of as "junk DNA" - that had jumped from one area of the genome to another, giving that little fragment power to unexpectedly turn on the gene.

The gene in question affects pigmentation in the corn plant. As a result of these experiments, the researchers were able to change yellow kernel corn to a blue kernel variety by compromising the activity of the enzyme in each male parent.

"This is the first example where somebody has been able to take an epigenetic source of variation and, through selective breeding, move it from an inactive state to an active state," said Jay Hollick, associate professor of molecular genetics at The Ohio State University and lead author of the study. "The gene changes its expression in an epigenetic fashion and it doesn't follow standard inheritance behaviors. Those two factors alone have pretty profound implications not only for breeding but also for evolution."

The study appears online in the journal The Plant Cell.

Plant breeders tend to expect to generate desired traits according to what is known as Mendelian principles of inheritance: Offspring receive one copy of genes from each parental plant, and the characteristics of the alleles, or alternative forms of genes, help predict which traits will show up in the next plant generation.

However, epigenetic variations that change the predictability of gene behavior have complicated those expectations.

"The breeding community searches for novel traits that will have commercial interest and they really don't care what the basis is as long as they can capture it and breed it. Epigenetic heritability throws a kink in the expectations, but our findings also provide an opportunity - if they recognize the variation they're looking for is the result of epigenetics, they could use that to their advantage," said Hollick, also an investigator in Ohio State's centers for RNA Biology and Applied Plant Sciences.

"Just by knowing that this allele behaves in this epigenetic fashion, I can breed plants that either have full coloration or no coloration or anything in between, because I am manipulating epigenetic variation and not genetic variation. And color, of course, is only one trait that could be affected."

With a longtime specialization in the molecular basis for unexpected gene activity in plants, Hollick had zeroed in on an enzyme called RNA polymerase IV (Pol IV). Multiple types of RNA polymerases are responsible for setting gene expression in motion in all cells, and Pol IV is an enigmatic RNA polymerase that is known in plants to produce small RNA molecules. Pol IV has puzzled scientists because despite its strong conservation in all plants, it appears to have no discernible impact on the development of Arabidopsis, a common model organism in plant biology. For example, when it is deleted from these plants, they show no signs of distress.

In corn, however, Hollick's lab had discovered previously that the absence of Pol IV creates clear problems in the plants, such as growing seeds in the tassel.

Hollick and colleagues observed that plants deficient in Pol IV also showed pigmentation in kernels of ears expected not to make any color at all - meaning they were expected to be yellow.

"Since we knew the misplaced tassel-seed trait was due to misexpression of a gene, we hypothesized that this pigment trait might be due to a pigment regulator being expressed in a tissue where it normally is never expressed. Molecular analysis showed that that was in fact the case," Hollick said.

The researchers selected dark kernels and light kernels from multiple generations of plants and crossed the plants derived form these different kernel classes to create additional new generations of corn.

"We found that the ears developed from those plants had even more darkly colored kernels and fewer lightly colored kernels. We could segregate the extreme types and cross them together and get this continued intensification of the pigmentation over many generations," he said. "We generated more progeny that had increasing amounts of pigment. This is taking a gene that is genetically null, that doesn't have any function in this part of the plant, and turning it from a complete null to a completely dominant form that produces full coloration.

"Essentially we were breeding a novel trait, but not by selecting for any particular gene. We were just continually altering the epigenetic status of one of the two parental genomes every time."

This led the scientists to question why the affected alleles of the pigmentation gene would behave in this way. An investigation of the affected alleles revealed the nearby presence of a transposon, or transposable element: a tiny piece of DNA that has leapt from one area of the genome to another.

Because the sequence of some small RNA fragments that come from Pol IV's activity are identical to the sequence of these transposons, the finding made sense to the scientists.

"Now that we know that Pol IV is involved in regulating transposons, it's not surprising that genes that are near transposons are now regulated by Pol IV," Hollick said.

This work was supported by the National Research Initiative of the USDA Cooperative State. Research, Education and Extension Service and the National Science Foundation. Hollick conducted this work at the University of California, Berkeley, before he joined Ohio State's faculty. Co-authors are former Berkeley colleagues Karl Erhard Jr., Susan Parkinson, Stephen Gross, Joy-El Barbour and Jana Lim.

.


Related Links
The Ohio State University
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Argentine growers face crippling tax hikes
Buenos Aires (UPI) Mar 29, 2013
Argentine President Cristina Fernandez de Kirchner is headed for another confrontation with farmers after the government announced hefty increases in taxes on grain exporters. Leading grain exporters said they received demands for large tax payments with government warnings they wouldn't receive rebates interest payment rates. The tax demands came amid agriculture industry estima ... read more


FARM NEWS
Regulation recommendations so that biofuel plants don't become weeds

Making fuel from CO2 in the atmosphere

Peach genome offers insights into breeding strategies for biofuels crops

Microalgae could be a profitable source of biodiesel

FARM NEWS
Robot ants successfully mimic real colony behavior

Small swarm of robots could do tasks

Robots joining China businesses, factories

Technique could help designers predict how legged robots will move on granular surfaces

FARM NEWS
Using fluctuating wind power

France publishes 1GW offshore wind tenders

Davey lauds, warns Scotland on renewables

Uruguay deal boosts S. America wind power

FARM NEWS
US announces stricter gasoline standards

Japan venture to bring electric tuk-tuks to Asia

China car maker BYD reports profit plunge

Man creates car that runs on liquid air

FARM NEWS
Two engineers killed in attack on Iraq gas field

Discovery opens door to efficiently storing and reusing renewable energy

Arkansas opens probe into ExxonMobil spill

Israeli navy seeks gas field defense force

FARM NEWS
Japan set to overhaul power industry

Westinghouse Springfields Completes First French Fuel Delivery

1 dead, 3 injured in Arkansas nuclear site accident

TEPCO warns more cuts needed to stay afloat

FARM NEWS
IMF calls for energy subsidy reform

EU launches debate on 2030 targets

Philippine clean energy tariffs to start next year: govt

IMF urges countries to cut energy subsidies

FARM NEWS
Researchers question evaluation methods for protected areas in the Amazon

Decreased Water Flow May be Trade-off for More Productive Forest

Middle ground between unlogged forest and intensively managed lands

Hunting for meat impacts on rainforest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement