Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Researchers Get Better Metrics on Laser Potential of Key Material
by Staff Writers
Raleigh, NC (SPX) Jul 29, 2013


MEH-PPV is a low-cost polymer that can be integrated with silicon chips.

Researchers from North Carolina State University have developed more accurate measurements of how efficiently a polymer called MEH-PPV amplifies light, which should advance efforts to develop a new generation of lasers and photonic devices.

"By improving our understanding of this material, we get closer to the longstanding industry goal of using MEH-PPV to create cheaper, more flexible photonic technologies," says Dr. Lewis Reynolds, a teaching associate professor of materials science and engineering at NC State and senior author of a paper describing the research.

MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have long sought to use the material to convert electricity into laser light for use in photonic devices such as optical amplifiers and chemical sensors.

At issue is MEH-PPV's "optical gain," which is a way of measuring how effectively a material can amplify light. Understanding a material's optical gain is essential to laser development.

Researchers determine the optical gain of MEH-PPV by pulsing laser light into the material and measuring the light that the MEH-PPV then produces in response. The NC State team used extremely short laser pulses - 10 laser pulses per second, with each pulse lasting only 25 picoseconds. To get a grasp of how short those pulses were, it's worth noting that a picosecond is one trillionth of a second.

Previous efforts to determine MEH-PPV's optical gain produced inaccurate results because they used laser pulses that lasted one thousand times longer.

"The longer pulses caused thermal degradation in the MEH-PPV, meaning they led to structural and molecular changes in the material," says Dr. Zach Lampert, a former Ph.D. student at NC State and lead author of the paper.

"Essentially, the longer laser pulses were heating the polymer. We were able to minimize these thermal degradation effects, and get a more accurate measurement, by using the picosecond pulses."

"Our new approach is fairly straightforward and can be easily implemented elsewhere," Reynolds says.

The paper, "Intrinsic optical gain in thin films of a conjugated polymer under picosecond excitation," is published online in Applied Physics Letters. Co-authors include Dr. Simon Lappi of NC State and Dr. John Papanikolas of the University of North Carolina at Chapel Hill. http://apl.aip.org/resource/1/applab/v103/i3/p033303_s1

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Taking the "Random" out of a Random Laser
Vienna, Austria (SPX) Jul 17, 2013
Random Lasers are tiny structures emitting light irregularly into different directions. Scientists at the Vienna University of Technology have now shown that these exotic light sources can be accurately controlled. The light they emit is as unique as a fingerprint: random lasers are tiny devices with a light emission pattern governed by random scattering of light. Understanding the u ... read more


TECH SPACE
Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

TECH SPACE
ISS Astronauts Remotely Control Planetary Rover From Space

Spain museum uses robot to help restore works

Chips that mimic the brain

Humanoid robot that could save people in disasters unveiled

TECH SPACE
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

TECH SPACE
BMW takes 'great leap forward' into electric car market

Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

TECH SPACE
Mideast energy industry under terrorist attack

Sequestration and fuel reserves

Shell rejects Ukrainian-made pipes for Yuzivska shale gas field

WWF urges Britain's Soco not to seek oil in DRC game park

TECH SPACE
TEPCO returns to profit on bailout, rate hikes

Japan nuclear watchdog to beef up Fukushima monitoring

Nuke experts blast Fukushima operator over leaks

Westinghouse and Vitkovice Take First Concrete Steps Towards Building Czech AP1000 Reactors

TECH SPACE
Spanish ministers meet with energy investors on market reforms

Americans continue to use more renewable energy sources

Sweden's Vattenfall hit by $4.6-bn charge as energy demand plunges

Six Tech Advancements Changing the Fossil Fuels Game

TECH SPACE
China passes laws to protect country's rare and ancient trees

Mini-monsters of the forest floor

Computer can infer rules of the forest

Boreal Forests in Alaska Becoming More Flammable




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement