Solar Energy News  
TIME AND SPACE
Researchers create an optical tractor beam that pulls macroscopic objects
by Staff Writers
Washington DC (SPX) Jan 18, 2023

Researchers showed that laser light can be used to pull a macroscopic object toward it. To do this they developed a graphene-SiO2 composite structure that gets hot on the side facing away from the laser. This causes gas molecules on the back to receive more energy, pushing the object toward the light source.

Researchers have developed a way to use laser light to pull a macroscopic object. Although microscopic optical tractor beams have been demonstrated before, this is one of the first times that laser pulling has been used on larger objects.

Light contains both energy and momentum that can be used for various types of optical manipulation such as levitation and rotation. Optical tweezers, for example, are commonly used scientific instruments that use laser light to hold and manipulate tiny objects such as atoms or cells. For the last ten years, scientists have been working on a new type of optical manipulation: using laser light to create an optical tractor beam that could pull objects.

"In previous studies, the light pulling force was too small to pull a macroscopical object," said research team member Lei Wang from QingDao University of Science and Technology in China. "With our new approach, the light pulling force has a much larger amplitude. In fact, it is more than three orders of magnitudes larger than the light pressure used to drive a solar sail, which uses the momentum of photons to exert a small pushing force."

In the Optica Publishing Group journal Optics Express, Wang and colleagues demonstrate that macroscopic graphene-SiO2 composite objects they designed can be used for laser pulling in a rarefied gas environment. This type of environment has a pressure much lower than atmospheric pressure.

"Our technique provides a non-contact and long-distance pulling approach, which may be useful for various scientific experiments," said Wang. "The rarefied gas environment we used to demonstrate the technique is similar to what is found on Mars. Therefore, it might have the potential for one day manipulating vehicles or aircraft on Mars."

Creating enough force
In the new work, the researchers designed a special graphene-SiO2 composite structure specifically for laser pulling. When irradiated with a laser, the structure creates a reversed temperature difference, meaning that the side facing away from the laser gets hotter.

When objects made from the graphene-SiO2 composite structure are irradiated by a laser beam, gas molecules on their back side receive more energy and push the object toward the light source. Combining this with the low air pressure of a rarified gas environment allowed the researchers to obtain a laser pulling force strong enough to move macroscopic objects.

Using a torsional - or turning - pendulum device made from their graphene-SiO2 composite structure, the researchers demonstrated the laser pulling phenomenon in a way that was visible to the naked eye. They then used a traditional gravity pendulum to quantitatively measure the laser pulling force. Both devices were about five centimeters long.

Repeatable, tunable pulling
"We found that the pulling force was more than three orders of magnitudes larger than the light pressure," said Wang. "In addition, the laser pulling is repeatable, and the force can be tuned by changing the laser power."

The researchers caution that this work is only a proof of concept and that many aspects of the technique would need improving before it would be practical. For example, a systematic theoretical model is needed to accurately predict the laser pulling force for given parameters including the geometry of object, laser energy and the surrounding media. They would also like to improve the laser pulling strategy so that it can work for a wider range of air pressures.

"Our work demonstrates that flexible light manipulation of a macroscopical object is feasible when the interactions between the light, object and medium are carefully controlled," said Wang. "It also shows the complexity of laser-matter interactions and that many phenomena are far from being understood on both on macro and micro scales."

Research Report:Macroscopic laser pulling based on Knudsen force in rarefied gas


Related Links
Optica
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Physicists confirm effective wave growth theory in space
Nagoya, Japan (SPX) Jan 06, 2023
A team from Nagoya University in Japan has observed, for the first time, the energy transferring from resonant electrons to whistler-mode waves in space. Their findings offer direct evidence of previously theorized efficient growth, as predicted by the non-linear growth theory of waves. This should improve our understanding of not only space plasma physics but also space weather, a phenomenon that affects satellites. When people imagine outer space, they often envision it as a perfect vacuum. In f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Half a million lives could be saved yearly by replacing wood and charcoal stoves in Africa

Can Iceland feed Europe?

Solar-powered system converts plastic and greenhouse gases into sustainable fuels

Aston University to help power Indonesia with affordable energy made from rice straw

TIME AND SPACE
A precision arm for miniature robots

Unpacking the "black box" to build better AI models

The oven won't talk to the fridge: 'smart' homes struggle

As AI rises, lawmakers try to catch up

TIME AND SPACE
UH professor developing new technologies to improve safety, resiliency of offshore energy systems

New research shows porpoises not harmed by offshore windfarms

A healthy wind

Intelligent drones to make wind turbines far more efficient

TIME AND SPACE
Computers that power self-driving cars could be a huge driver of global carbon emissions

Uber not planning layoffs: CEO

Bosch plans $1-bn Chinese electromobility site

Insurers need to gear up for electric cars: Swiss Re

TIME AND SPACE
Novel design helps develop powerful microbatteries

Electric car batteries could be key to boosting energy storage: study

Turning abandoned mines into batteries

Researchers gain deeper understanding of mechanism behind superconductors

TIME AND SPACE
Acquittal of Fukushima operator ex-bosses upheld

Slovenia extends nuclear plant operation until 2043

UN nuclear agency says stepping up presence in Ukraine

Saudi Arabia says seeks to use own uranium for nuclear project

TIME AND SPACE
COP28 a chance for 'hard questions' on fossil fuels: UN climate chief

Thunberg says Davos elite 'fuelling destruction of planet'

EU takes on US, China over clean tech in Davos

Two dead in China chemical plant explosion

TIME AND SPACE
New Indonesia capital imperils ancient Eden with 'ecological disaster'

Brazilian Amazon deforestation up 150% in Bolsonaro's last month

Rwandan tree carbon stock mapped from above

German climate activists cut top off Christmas tree









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.