Solar Energy News  
SHAKE AND BLOW
Researchers develop new explanation for destructive earthquake vibrations
by Staff Writers
Providence RI (SPX) Mar 04, 2020

Research suggest that rocks colliding inside fault zones, like this one in Maine, may contribute to damaging high-frequency earthquake vibrations.

Earthquakes produce seismic waves with a range of frequencies, from the long, rolling motions that make skyscrapers sway, to the jerky, high-frequency vibrations that cause tremendous damage to houses and other smaller structures. A pair of Brown University geophysicists has a new explanation for how those high-frequency vibrations may be produced.

In a paper published in Geophysical Research Letters, Brown faculty members Victor Tsai and Greg Hirth propose that rocks colliding inside a fault zone as an earthquake happens are the main generators of high-frequency vibrations. That's a very different explanation than the traditional one, the researchers say, and it could help explain puzzling seismic patterns made by some earthquakes. It could also help scientists predict which faults are likely to produce the more damaging quakes.

"The way we normally think of earthquakes is that stress builds up on a fault until it eventually fails, the two sides slip against each other, and that slip alone is what causes all the ground motions we observe," said Tsai, an associate professor in Brown's Department of Earth, Environmental and Planetary Sciences. "The idea of this paper is to evaluate whether there's something other than just slip. The basic question is: If you have objects colliding inside the fault zone as it slips, what physics could result from that?"

Drawing from mathematical models that describe the collisions of rocks during landslides and other debris flows, Tsai and Hirth developed a model that predicts the potential effects of rock collisions in fault zones. The model suggested the collisions could indeed be the principal driver of high-frequency vibrations. And combining the collision model with more traditional frictional slip models offers reasonable explanations for earthquake observations that don't quite fit the traditional model alone, the researchers say.

For example, the combined model helps explain repeating earthquakes - quakes that happen at the same place in a fault and have nearly identical seismic wave forms. The odd thing about these quakes is that they often have very different magnitudes, yet still produce ground motions that are nearly identical. That's difficult to explain by slip alone, but makes more sense with the collision model added, the researchers say.

"If you have two earthquakes in the same fault zone, it's the same rocks that are banging together - or at least rocks of basically the same size," Tsai said. "So if collisions are producing these high-frequency vibrations, it's not surprising that you'd get the same ground motions at those frequencies regardless of the amount of slip that occurs."

The collision model also may help explain why quakes at more mature fault zones - ones that have had lots of quakes over a long period of time - tend to produce less damage compared to quakes of the same magnitude at more immature faults. Over time, repeated quakes tend to grind down the rocks in a fault, making the faults smoother. The collision model predicts that smoother faults with less jagged rocks colliding would produce weaker high-frequency vibrations.

Tsai says that more work needs to be done to fully validate the model, but this initial work suggests the idea is promising. If the model does indeed prove valid, it could be helpful in classifying which faults are likely to produce more or less damaging quakes.

"People have made some observations that particular types of faults seem to generate more or less high-frequency motion than others, but it has not been clear why faults fall into one category or the other," he said. "What we're providing is a potential framework for understanding that, and we could potentially generalize this to all faults around the world. Smoother faults with rounded internal structures may generally produce less high-frequency motions, while rougher faults would tend to produce more."

The research also suggests that some long-held ideas about how earthquakes work might need revising.

"In some sense it might mean that we know less about certain aspects of earthquakes than we thought," Tsai said. "If fault slip isn't the whole story, then we need a better understanding of fault zone structure."

Research paper


Related Links
Brown University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
Earthquake kills nine in Turkey, injures dozens in Iran
Istanbul (AFP) Feb 23, 2020
A magnitude 5.7 earthquake in northwestern Iran on Sunday killed nine people, including children, in neighbouring Turkey and injured dozens on both sides of the border, authorities said. Ambulances and teams of medics rushed to the scene after the quake left homes in piles of rubble in eastern Turkey, picking through the wreckage, while nearby schools were also reported damaged. Turkish officials said four children were among the nine dead, and Iran reported more than 65 people injured, includin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Using open-source software to analyze economics of biofuels, bioproducts

Can palm-oil biodiesel can reduce greenhouse gas emissions

Novel photocatalytic method converts biopolyols and sugars into methanol and syngas

New method converts carbon dioxide to methane at low temperatures

SHAKE AND BLOW
Pentagon adopts 'ethical principles' for artificial intelligence use

Pentagon adopts ethics for artificial intelligence use

EU seeks 'responsible' AI to dispel Big Brother fears

Autonomous vehicle technology may improve safety for US Army convoys, report says

SHAKE AND BLOW
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

SHAKE AND BLOW
Alphabet's Waymo raises $2.25 bn to rev up autonomous projects

Luxembourg becomes first country with free public transport

VW ditches natural gas to focus on e-cars

Plastic shields protect China's ride-hailing drivers against virus

SHAKE AND BLOW
Isotope movement holds key to the power of fusion reactions

Design of the W7-X fusion device enables it to overcome obstacles

Generating electricity 'out of thin air'

Cobalt supply can meet demand for electric vehicle and electronics batteries

SHAKE AND BLOW
Study analyzes impact of switch from nuclear power to coal, suggests directions for policy

GE Hitachi Progresses Vendor Design Review in Canada for BWRX-300 Small Modular Reactor

Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

VTT develops a Small Modular Reactor for district heating

SHAKE AND BLOW
Coronavirus outbreak slashes China carbon emissions: study

Extreme weather to overload urban power grids, study shows

EU chief pleads to save green deal in budget holed by Brexit

Carbon emissions from energy 'flat' in 2019: IEA

SHAKE AND BLOW
Bushfires burned a fifth of Australia's forest: study

Hurricanes benefit mangroves in Florida's Everglades, study finds

Satellite image data reveals rapid decline of China's intertidal wetlands

Hungary's Orban vows to plant 10 trees for every newborn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.