![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Newark DE (SPX) Sep 26, 2018
A team of researchers at the University of Delaware's Center for Catalytic Science and Technology (CCST) has discovered a novel two-step process to increase the efficiency of carbon dioxide (CO2) electrolysis, a chemical reaction driven by electrical currents that can aid in the production of valuable chemicals and fuels. The results of the team's study were published Monday, Aug. 20 in Nature Catalysis. The research team, consisting of Feng Jiao, associate professor of chemical and biomolecular engineering, and graduate students Matthew Jouny and Wesley Luc, obtained their results by constructing a specialized three-chambered device called an electrolyser, which uses electricity to reduce CO2 into smaller molecules. Compared to fossil fuels, electricity is a much more affordable and environmentally-friendly method for driving chemical processes to produce commercial chemicals and fuels. These can include ethylene, which is used in the production of plastics, and ethanol, a valuable fuel additive. "This novel electrolysis technology provides a new route to achieve higher selectivities at incredible reaction rates, which is a major step towards commercial applications," said Jiao, who also serves as associate director of CCST. Whereas direct CO2 electrolysis is the standard method for reducing carbon dioxide, Jiao's team broke the electrolysis process into two steps, reducing CO2 into carbon monoxide (CO) and then reducing the CO further into multi-carbon (C2+) products. This two-part approach, said Jiao, presents multiple advantages over the standard method. "By breaking the process into two steps, we've obtained a much higher selectivity towards multi-carbon products than in direct electrolysis," Jiao said. "The sequential reaction strategy could open up new ways to design more efficient processes for CO2 utilization." Electrolysis is also driving Jiao's research with colleague Bingjun Xu, assistant professor of chemical and biomolecular engineering. In collaboration with researchers at Tianjin University in China, Jiao and Xu are designing a system that could reduce greenhouse gas emissions by using carbon-neutral solar electricity. "We hope this work will bring more attention to this promising technology for further research and development," Jiao said. "There are many technical challenges still be solved, but we are working on them!"
![]() ![]() A key to climate stabilization could be buried deep in the mud Tallahassee FL (SPX) Sep 25, 2018 Earth's peatland soils store a lot of carbon - about as much as currently flows freely through the atmosphere as carbon dioxide. As global temperatures rise, scientists worry that the planet's grip on these carbon reservoirs could weaken, unleashing a "carbon bomb" that could further destabilize Earth's climate systems. But a new study led by Florida State University offers some hope that Earth's carbon reservoirs might not be quite as vulnerable as experts predict. In a global survey of peatlands ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |