Solar Energy News  
TECH SPACE
Researchers develop smaller, lighter radiation shielding
by Staff Writers
Raleigh NC (SPX) Feb 13, 2020

Stock illustration only

Researchers at North Carolina State University have developed a new technique for shielding electronics in military and space exploration technology from ionizing radiation. The new approach is more cost effective than existing techniques, and the secret ingredient is...rust.

"Our approach can be used to maintain the same level of radiation shielding and reduce the weight by 30% or more, or you could maintain the same weight and improve shielding by 30% or more - compared to the most widely used shielding techniques," says Rob Hayes, co-author of a paper on the work and an associate professor of nuclear engineering at NC State. "Either way, our approach reduces the volume of space taken up by shielding."

Ionizing radiation can cause significant problems for electronic devices. To protect against this, devices that may be exposed to radiation - such as devices used in spacecraft - incorporate radiation shielding.

Weight is a significant factor in designing aerospace technologies, and the shielding most commonly found in aerospace devices consists of putting an aluminum box around any sensitive technologies. This has been viewed as providing the best tradeoff between a shield's weight and the protection it provides.

The new technique relies on mixing oxidized metal powder - rust - into a polymer, and then incorporating it into a common conformal coating on the relevant electronics.

"Metal oxide powder offers less shielding than metal powder would, but oxides are less toxic and don't pose electromagnetic challenges that could interfere with a device's operation," Hayes says.

"Radiation transport calculations show that inclusion of the metal oxide powder provides shielding comparable to a conventional shield," says Mike DeVanzo, a former graduate student at NC State and first author on the work. "At low energies, the metal oxide powder reduces both gamma radiation to the electronics by a factor of 300 and the neutron radiation damage by 225%."

"At the same time, the coating is less bulky than a shielding box," Hayes says. "And in computational simulations, the worst performance of the oxide coating still absorbed 30% more radiation than a conventional shield of the same weight.

"On top of that, the oxide particulate is much less expensive than the same amount of the pure metal," Hayes says.

"This could potentially reduce the need for conventional shielding materials on space-based electronics," adds DeVanzo, who works at Lockheed Martin Space.

The researchers are continuing to test and fine-tune their shielding technique for use in various applications.

"We're now looking for industry partners to help us develop the technology for commercial use," Hayes says.

Research paper


Related Links
North Carolina State University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
UNH researchers find clues to how hazardous space radiation begins
Durham NH (SPX) Feb 04, 2020
Scientists at the University of New Hampshire have unlocked one of the mysteries of how particles from flares on the sun accumulate at early stages in the energization of hazardous radiation that is harmful to astronauts, satellites and electronic equipment in space. Using data obtained by NASA's Parker Solar Probe (PSP), researchers observed one of the largest events so far during the mission. These observations show how plasma that is released after a solar flare - a sudden flash of increased br ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Drilling a 3,000 meters deep well

Water-conducting membrane allows carbon dioxide to transform into fuel more efficiently

Vast amounts of valuable energy, nutrients, water lost in world's fast-rising wastewater streams

UCF researchers work on project to develop cleaner-burning, renewable fuels

TECH SPACE
NASA contracts Maxar to supply robotic arm for lunar lander

Northrop Grumman Remotec and Kinova Robotics sign distribution agreement for robotic manipulator

NASA funds demonstration of assembly and manufacturing in space

Progressing towards assuredly safer autonomous systems

TECH SPACE
Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

TECH SPACE
Volvo Cars and Chinese owner Geely plan to merge

GM Korea to suspend assembly line as virus hits parts supply

Toyota extends China plant closure over virus

Coronavirus claims world's biggest capacity car plant

TECH SPACE
Scientists learn more about the first hours of a lithium-ion battery's life

Quantum technologies: New insights into superconducting processes

Researchers virtually 'unwind' lithium battery for the first time

New droplet-based electricity generator: A drop of water generates 140V power, lighting up 100 LED bulbs

TECH SPACE
GE Hitachi Nuclear Energy and CEZ signs small modular reactor tech deal with Czech Republic

Framatome signs contracts with Tennessee Valley Authority

GE Hitachi Nuclear Energy begins NRC licensing process for BWRX-300 Small Modular Reactor

Molecule modification could improve reprocessing of spent nuclear fuel

TECH SPACE
Model shows how to make on-farm sustainable energy projects profitable

Eastern EU states opposed to 2050 zero-emissions goal

As nations bicker, a greener future evolves in finance

New research could aid cleaner energy technologies

TECH SPACE
Secondary forests provide deforestation buffer for old-growth primary forests

French lenders bankroll firms linked to deforestation: analysis

Amazon deforestation for January hits record

Bolsonaro's Amazon 'dream' is indigenous 'nightmare'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.