|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Brooks Hays Providence, R.I. (UPI) Jul 28, 2015
Researchers at Brown University -- with the help of complex computer models -- have predicted a substance with a melting point higher than any previously studied material. The hypothetical substance is a precise combination hafnium, nitrogen and carbon. Mathematical models suggest the synthetic material boasts a melting point of 4,400 kelvins, or 7,460 degrees Fahrenheit -- two-thirds the temperature of the sun's surface. The calculated melting point is 200 kelvins higher than the current record holder, tantalum hafnium carbide. Currently, the material exists only on paper. The theoretical substance and its record-breaking melting point are detailed in the journal Physical Review B. Scientists are now working to synthesize the substance in the lab. Actually creating new materials -- especially those with unknown practical applications -- is expensive, so confining initial experimentation to computer models makes sense. "The advantage of starting with the computational approach is we can try lots of different combinations very cheaply and find ones that might be worth experimenting with in the lab," study co-author Axel van de Walle, an associate professor of engineering at Brown, explained in a press release. "Otherwise we'd just be shooting in the dark. Now we know we have something that's worth a try." The mathematical method used to predict the substance's melting point is called "electronic structure calculations." Using the law of quantum mechanics as a guide, the math models simulate physical processes at the atomic level. But even modeling physical processes at the nanoscale is a task too big for just any computer. The equations required the help of National Science Foundation's XSEDE computer network and Brown's "Oscar" high-performance computer cluster. Once synthesized, it's not clear what use the material will serve. A high melting point alone won't predict a substance's successful application outside the lab. But scientists believe the materials could serve as a protective barrier material inside gas turbines or airplanes.
Related Links Understanding Time and Space
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |